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A modified limited-memory BNS method for unconstrained minimization
derived from the conjugate directions idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237

List of participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

5



6



Preface

This volume comprises peer-reviewed papers that are based on invited lectures, sur-
vey lectures, short communications, and posters presented at the 17th seminar Pro-
grams and Algorithms of Numerical Mathematics (PANM) held in Dolńı Maxov,
Czech Republic, June 8–13, 2014.

The seminar was organized by the Institute of Mathematics of the Academy of
Sciences of the Czech Republic. It continued the previous seminars on mathemat-
ical software and numerical methods held (with only one exception) biannually in
Aľsovice, Bratř́ıkov, Janov nad Nisou, Kořenov, Lázně Libverda, Dolńı Maxov, and
Prague in the period 1983–2012. The objective of this series of seminars is to provide
a forum for presenting and discussing advanced topics in numerical analysis, single-
or multi-processor applications of computational methods, and new approaches to
mathematical modeling.

More than 60 participants from the field took part in the seminar, most of them
from Czech universities and from institutes of the Academy of Sciences of the Czech
Republic but also from Slovakia and the United States. We appreciate the traditional
participation of a significant number of young scientists, PhD students, and also some
undergraduate students at the PANM seminar. We wish to believe that also those,
who took part in the seminar for the first time, have found the atmosphere of the
seminar friendly and working, and will join the PANM community.

The organizing committee consisted of Jan Chleboun, Petr Přikryl, Karel Segeth,
Jakub Š́ıstek, and Tomáš Vejchodský. Ms Hana B́ılková kindly prepared the elec-
tronic version of the book.

All papers have been reproduced directly from materials submitted by the au-
thors. Naturally, an attempt has been made to unify the layout of papers. A unique
feature of this volume of proceedings is a photograph of the participants in front of
Maxov Hotel.

By chance, we have found an undated postcard with Maxov Hotel and vicinity.
We guess from several clues that this winter photograph was taken in about 1962. We
believe that the members of the PANM seminar will find this photograph interesting
and we publish it in the proceedings, too.

The editors and organizers wish to thank all the participants for their valuable
contributions and, moreover, all the distinguished scientists who took a share in
reviewing the submitted manuscripts.

J. Chleboun, P. Přikryl, K. Segeth, J. Š́ıstek, T. Vejchodský
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Abstract

This paper is concerned with the stability analysis of the space-time discontinu-

ous Galerkin method for the solution of nonstationary, nonlinear, convection-diffusion

problems. In the formulation of the numerical scheme we use the nonsymmetric, sym-

metric and incomplete versions of the discretization of diffusion terms and interior and

boundary penalty. Then error estimates are briefly characterized. The main atten-

tion is paid to the investigation of unconditional stability of the method. Theoretical

results are demonstrated by a numerical example.

1. Introduction

One of efficient and robust techniques for the numerical solution of partial differ-
ential equations is the discontinuous Galerkin (DG) method. It is based on piecewise
polynomial approximations of the sought exact solution over a partition of the com-
putational domain without any requirement of the continuity on interfaces between
neighbouring elements. Most of works on the DG method are concerned with space
discretization. The numerical simulation of strongly nonstationary transient prob-
lems requires the application of numerical schemes of high order of accuracy both in
space and in time. For some applications, the standard Euler schemes or θ-schemes
are not sufficiently accurate in time. In computational fluid dynamics, Runge-Kutta
methods are very popular ([3]). However they are conditionally stable. It appears
suitable to use the discontinuous Galerkin discretization with respect to space as
well as time for the construction of numerical schemes with high accuracy in space
and time for the solution of nonlinear nonstationary problems. The discontinuous
Galerkin time discretization was introduced and analyzed e.g. in [4] for the solu-
tion of ordinary differential equations. In [6] it was combined with conforming finite
elements and applied to parabolic problems. See also the monograph [7].

The papers [2] and [5] are concerned with theoretical analysis of error estimates for
the space-time DG method applied to nonlinear nonstationary convection-diffusion
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problems. However, in a general case the results were obtained under a CFL-like
stability condition applied in the vicinity of the boundary. There is a natural ques-
tion, if this condition is really necessary for guaranteeing the stability. This was the
motivation for the investigation of the stability of the space-time DG method. In
this paper we present a brief description of the obtained results. The analysis is
rather complicated and technical and detailed proofs will be published in [1].

2. Formulation of the continuous problem

Let Ω ⊂ R
d, d = 2, 3, be a bounded domain and T > 0. We consider the initial-

boundary value problem to find u : QT = Ω× (0, T ) → R such that

∂u

∂t
+

d
∑

s=1

∂fs(u)

∂xs
− div(β(u)∇u) = g in QT , (1)

u |∂Ω×(0,T ) = uD, (2)

u(x, 0) = u0(x), x ∈ Ω. (3)

We assume, that g, uD, u
0, fs are given functions and fs ∈ C1(R), |f ′

s| ≤ C, fs(0) = 0,
s = 1, . . . , d. Moreover, let the function β : R → [β0, β1], 0 < β0 < β1 < ∞, be
Lipschitz continuous: |β(u1)− β(u2)| ≤ Lβ |u1 − u2| for all u1, u2 ∈ R.

3. Space-time discretization

In the time interval [0, T ] we introduce a partition formed by time instants
0 = t0 < t1 < . . . < tM = T, and denote Im = (tm−1, tm), τm = tm − tm−1,
m = 1 . . . ,M . We set τ = maxm=1,...,M τm. For a function ϕ defined in

⋃M
m=1 Im

we denote one-sided limits at tm as ϕ±
m = ϕ(tm±) = limt→tm± ϕ(t) and the jump as

{ϕ}m = ϕ(tm+)− ϕ(tm−).
For each Im we consider a system of partitions {Th,m}h∈(0,h0) with h0 > 0 of Ω

into a finite number of closed triangles with mutually disjoint interiors (partitions
are in general different for different m). We set hK = diam(K) for K ∈ Th,m,
hm = maxK∈Th,m

hK and h = maxm=1,...,M hm.
By Fh,m we denote the system of all faces of all elements K ∈ Th,m. It consists of

the set of all inner faces F I
h,m and the set of all boundary faces FB

h,m. Each Γ ∈ Fh,m

will be associated with a unit normal vector nΓ. By K
(L)
Γ and K

(R)
Γ ∈ Th,m we denote

the elements adjacent to the face Γ ∈ Fh,m. We shall use the convention, that nΓ

is the outer normal to ∂K
(L)
Γ . Over a triangulation Th,m, for each positive integer k,

we define the broken Sobolev space Hk(Ω, Th,m) = {v; v|K ∈ Hk(K) ∀K ∈ Th,m}.

If v ∈ H1(Ω, Th,m) and Γ ∈ Fh,m, then v|
(L)
Γ , v|

(R)
Γ will denote the traces of v on Γ

from the side of the elements K
(L)
Γ , K

(R)
Γ adjacent to Γ. For Γ ∈ F I

h,m we set

〈v〉Γ =
1

2

(

v|
(L)
Γ + v|

(R)
Γ

)

, [v]Γ = v|
(L)
Γ − v|

(R)
Γ .
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We use the notation

h(Γ) =
h
K

(L)
Γ

+ h
K

(R)
Γ

2
for Γ ∈ F I

h,m, h(Γ) = h
K

(L)
Γ

for Γ ∈ FB
h,m.

If u, ϕ ∈ H2(Ω, Th,m) and cW > 0, we introduce the forms

ah,m(u, ϕ) =
∑

K∈Th,m

∫

K

β(u)∇u · ∇ϕdx

−
∑

Γ∈FI
h,m

∫

Γ

(〈β(u)∇u〉 · nΓ [ϕ] + θ 〈β(u)∇ϕ〉 · nΓ [u]) dS

−
∑

Γ∈FB
h,m

∫

Γ

(β(u)∇u · nΓ ϕ+ θβ(u)∇ϕ · nΓ u− θβ(u)∇ϕ · nΓ uD) dS,

Jh,m(u, ϕ) = cW
∑

Γ∈FI
h,m

h(Γ)−1

∫

Γ

[u] [ϕ]dS + cW
∑

Γ∈FB
h,m

h(Γ)−1

∫

Γ

uϕ dS,

bh,m(u, ϕ) = −
∑

K∈Th,m

∫

K

d
∑

s=1

fs(u)
∂ϕ

∂xs
dx

+
∑

Γ∈FI
h,m

∫

Γ

H(u
(L)
Γ , u

(R)
Γ ,nΓ) [ϕ] dS +

∑

Γ∈FB
h,m

∫

Γ

H(u
(L)
Γ , u

(L)
Γ ,nΓ)ϕdS, (4)

lh,m(ϕ) =
∑

K∈Th,m

∫

K

gϕ dx+ β0 cW
∑

Γ∈FB
h,m

h(Γ)−1

∫

Γ

uD ϕdS.

Let us note that in integrals over faces we omit the subscript Γ. We consider
θ = 1, θ = 0 and θ = −1 and get the symmetric (SIPG), incomplete (IIPG) and
nonsymmetric (NIPG) variants of the approximation of the diffusion terms, respec-
tively. In (4), H is a numerical flux, which is Lipschitz-continuous, consistent and
conservative.

Let p, q ≥ 1 be integers. For each m = 1, . . . ,M we define the spaces

Sp
h,m = {ϕ ∈ L2(Ω); ϕ|K ∈ P p(K) ∀K ∈ Th,m},

Sp,q
h,τ = {ϕ ∈ L2(QT ); ϕ|Im =

q
∑

i=0

tiϕi withϕi ∈ Sp
h,m, m = 1, . . . ,M}.

By (·, ·) and ‖ · ‖ we denote the scalar product and the norm in L2(Ω). The symbol
| · |H1(K) denotes the seminorm in the space H1(K). The space H1(Ω, Th,m) will be
equipped with the norm

‖ϕ‖DG,m =





∑

K∈Th,m

|ϕ|2H1(K) + Jh,m(ϕ, ϕ)





1/2

.
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Definition. We say that U is an approximate solution of (1)-(3), if U ∈ Sp,q
h,τ and

∫

Im

((

∂U

∂t
, ϕ

)

+ ah,m(u, ϕ) + β0 Jh,m(u, ϕ) + bh,m(U, ϕ)

)

dt+ ({U}m−1, ϕ
+
m−1)

=

∫

Im

lh,m(ϕ) dt, ∀ϕ ∈ Sp,q
h,τ , m = 1, . . . ,M, (5)

U−

0 := L2(Ω)-projection of u0 on Sp
h,1.

4. Summary of results on error estimates

The papers [5] and [2] were devoted to the analysis of the STDG method applied
to problem in the case of linear diffusion and nonlinear diffusion, respectively. Under
the assumptions on the regularity of the exact solution

u ∈ Hq+1(0, T ;H1(Ω)) ∩ C([0, T ];Hp+1(Ω)),

‖∇u‖L∞(Ω) ≤ cR for a. e. t ∈ (0, T ),

using approximation properties of the Sp
h,m- and Sp,q

h,τ - interpolation operators, as-
sumptions on the properties of the meshes, namely the shape regularity and local
quasiuniformity, and the condition τm ≥ c h2

m, m = 1, . . . ,M, error estimates in terms
of h and τ were proven.

Theorem 1. There exists a constant c > 0 such that

‖e−m‖
2 +

β0

2

m
∑

j=1

∫

Ij

‖e‖2DG,jdt ≤ c
(

h2p|u|2C([0,T ];Hp+1(Ω)) + τ 2q+α|u|2Hq+1(0,T ;H1(Ω))

)

,

m = 1, . . . ,M, h ∈ (0, h0). (6)

Here α = 2, if uD is a polynomial of degree ≤ q in t. Otherwise, under the assumption

that the condition

τm ≤ CCFLhK
(L)
Γ

(7)

with a constant CCFL independent of hK , τm and M is satisfied for all elements K
adjacent to the boundary ∂Ω, estimate (6) holds with α = 0.

5. Analysis of stability

There is a natural question, if condition (7) reminding the CFL stability condition
is necessary for the derivation of the error estimate (6), or it is also important for
guaranteeing the stability of the STDG method (5). In what follows, we shall show
that method (5) is unconditionally stable. This means that our goal is to prove that

12



the approximate solution U of problem (1)-(3) is bounded by the L2-norm of g, u0

and by the ‖ · ‖DGB,m-norm of uD, which is defined as

‖uD‖DGB,m :=
(

JB
h,m(uD, uD)

)1/2
=



cW
∑

Γ∈FB
h,m

h−1(Γ)

∫

Γ

|uD|
2dS





1/2

.

The stability analysis starts by setting ϕ := U in the basic relation (5). We get

∫

Im

((

∂U

∂t
, U

)

+ ah,m(U, U) + β0 Jh,m(U, U) + bh,m(U, U)

)

dt (8)

+ ({U}m−1, ϕ
+
m−1) =

∫

Im

lh,m(U) dt.

After some manipulations we can derive the following identity

∫

Im

(

∂U

∂t
, U

)

dt+ ({U}m−1, U
+
m−1) =

1

2

(

‖U−
m‖

2 − ‖U−
m−1‖

2 + ‖{U}m−1‖
2
)

. (9)

For a sufficiently large constant cW , whose lower bound is determined by β0 and the
constants from the multiplicative trace inequality, inverse inequality, local quasiuni-
formity of the meshes, we can prove the coercivity of the diffusion term:

∫

Im

(ah,m(U, U) + β0 Jh,m(U, U)) dt ≥
β0

2

∫

Im

‖U‖2DG,m dt−
β0

2

∫

Im

‖uD‖
2
DGB,m dt.

(10)
Furthermore, if k1, k2 > 0 then there exists a constant cb = cb(k1) such that the
following inequalities for the convection term and for the right-hand side form hold:

∫

Im

|bh,m(U, U)| dt ≤
β0

k1

∫

Im

‖U‖2DG,m dt+ cb

∫

Im

‖U‖2 dt. (11)

∫

Im

|lh,m(U)| dt ≤
1

2

∫

Im

(

‖g‖2 + ‖U‖2
)

dt+ β0k2

∫

Im

‖uD‖
2
DGB,m dt

+
β0

k2

∫

Im

‖U‖2DG,m dt. (12)

If we substitute estimates (9)-(12) into our basic identity (8) and set k1 = k2 = 8,
c = max{2cb + 1, 17β0}, after some manipulation we get

‖U−
m‖

2 − ‖U−
m−1‖

2 +
β0

2

∫

Im

‖U‖2DG,mdt

≤ c

(
∫

Im

‖g‖2 dt+

∫

Im

‖U‖2 dt+

∫

Im

‖uD‖
2
DGB,mdt

)

. (13)
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Now our further task is to estimate the expression
∫

Im
‖U‖2 dt in terms of g

and uD. The main tool is the concept of the discrete characteristic function ζy ∈ Sp,q
h,τ

to U for y ∈ Im = (tm−1, tm) defined by

∫

Im

(ζy, ϕ) dt =

∫ y

tm−1

(U, ϕ) dt ∀ϕ ∈ Sp,q−1
h,τ , ζy(t

+
m−1) = U(t+m−1).

The operator assigning ζy to U is continuous, i.e, there exists cq > 0, depending on q
only, such that

∫

Im

‖ζy‖
2
DG,m dt ≤ cq

∫

Im

‖U‖2DG,m dt,

∫

Im

‖ζy‖
2 dt ≤ cq

∫

Im

‖U‖2 dt.

Then, after a technical and complicated analysis, it is possible to prove this important
estimate: there exists a constant c > 0 such that

∫

Im

‖U‖2 dt ≤ c τm

(

‖U−

m−1‖
2 +

∫

Im

‖g‖2 + ‖uD‖
2
DGB,m dt

)

. (14)

Now we come to the formulation of our main result, which demonstrates the
unconditional stability of the STDG method in the discrete L2(L∞)-norm, energy
DG-norm and L2(L2)-norm. (A detailed proof can be found in [1].)

Theorem 2. There exists a constant c > 0 such that

‖U−

m‖
2 +

β0

2

m
∑

j=1

∫

Ij

‖U‖2DG,j dt ≤ c

(

‖U−

0 ‖
2 +

m
∑

j=1

∫

Ij

(‖g‖2 + ‖uD‖
2
DGB,j) dt

)

,

m = 1, . . . ,M, h ∈ (0, h0),

‖U‖2L2(QT ) ≤ c

(

‖U−

0 ‖
2 +

M
∑

m=1

∫

Im

(‖g‖2 + ‖uD‖
2
DGB,m) dt

)

, h ∈ (0, h0).

6. Numerical experiment

We consider the problem

∂u

∂t
+ u

∂u

∂x1
+ u

∂u

∂x2
= ǫ∆u+ g in (0, 1)2 × (0, 10),

with ǫ = 0.1 and such initial and Dirichlet boundary conditions that the exact
solution has the form

u(x1, x2, t) = (1− e−10t) û(x1, x2),

where û(x1, x2) = 2rαx1x2(1− x1)(1− x2), r = (x1 + x2)
1/2 and α ∈ R is a constant.

It is possible to prove that u ∈ Hq+1(0, T ;Hβ(Ω)) for all β ∈ (0, α+3). (Here Hβ(Ω)
denotes the Sobolev-Slobodetskii space of functions with ”noninteger derivatives”.)
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Figure 1: Coarse mesh with 235 elements

We used five special triangular meshes having 235, 333, 749, 1622 and 2521 el-
ements. All these meshes have refined elements along the right-hand side of the
boundary. Figure 1 shows the coarsest mesh. In numerical experiments space poly-
nomial degree p = 1, 2, 3 and time polynomial degree q = 2 were used. We choose
fixed time step τ = 0.025 and set cW = 100 for SIPG. Tables show the computational
errors in the L∞(L2(Ω))-norm along the time interval [0, 10], and the corresponding
orders of convergence (EOC). It is seen, that for a sufficiently regular exact solution
(case α = 4), for the SIPG method we have optimal order of convergence O(hp+1)
for p = 1, 2, 3, whereas in the case with irregular solution (α = −3/2) the error
estimates are of order O(h3/2) for p = 1, 2, 3 (this result can be proven with the aid
of estimates in Sobolev-Slobodetskii spaces). The presented numerical experiments
demonstrate the unconditional stability of the numerical process without the CFL-
like condition (7). Further numerical experiments including also the NIPG case can
be found in [1].

p=1 p=2 p=3

Mesh h ‖eh‖ EOC ‖eh‖ EOC ‖eh‖ EOC
1 1.768E-01 2.167E-03 - 1.305E-04 - 6.681E-06 -
2 1.414E-01 1.488E-03 1.685 7.218E-05 2.654 2.948E-06 3.667
3 8.839E-02 6.549E-04 1.746 1.984E-05 2.748 5.019E-07 3.767
4 5.657E-02 2.914E-04 1.814 5.615E-06 2.828 9.011E-08 3.848
5 4.419E-02 1.842E-04 1.858 2.764E-06 2.872 3.440E-08 3.901

Table 1: Computational errors and the corresponding experimental orders (EOC) of
convergence of the SIPG method for α = 4
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p=1 p=2 p=3

Mesh h ‖eh‖ EOC ‖eh‖ EOC ‖eh‖ EOC
1 1.768E-01 2.668E-02 - 6.038E-03 - 2.784E-03 -
2 1.414E-01 1.946E-02 1.415 4.330E-03 1.490 2.003E-03 1.475
3 8.839E-02 9.856E-03 1.447 2.149E-03 1.491 9.985E-04 1.481
4 5.657E-02 5.116E-03 1.469 1.103E-03 1.493 5.145E-04 1.486
5 4.419E-02 3.552E-03 1.478 7.629E-04 1.495 3.562E-04 1.489

Table 2: Computational errors and the corresponding experimental orders of conver-
gence of the SIPG method for α = −3/2

Acknowledgements

This work was supported by the grant No. 13-00522S (M. Feistauer) of the Czech
Science Foundation, and by the grant SVV-2014-260106 financed by the Charles
University in Prague (M. Balázsová, M. Hadrava and A. Kośık).
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Abstract

A two-parametric system of close planar curves is defined in the introduction of the
presented article. Next a theorem stating the existence of the envelope is presented
and proved. A mathematical model of the collecting mechanism of the Horal forage
trailer is developed and used for practical demonstrations. The collecting mechanism
is a double joint system composed of three rods. An equation describing the trajectory
of a random point of the working rod is derived using Maple. The trajectories of
two close points of the working rod create a planar system of close curves, of which
the envelope can be computed. As this computation is extremely complex, Maple
was used to optimize the computations. Through this optimization the computation
needed less memory and the processing time was shorter. In the final part the working
areas and the corresponding envelopes of all rods defining the collecting mechanism
are plotted.

1. Theoretical introduction

Definition of the planar close curves: Smooth and continuous two-parametric
curves [x(p, q), y(p, q), z] and [x(P,Q), y(P,Q), z] are planar close curves if:

(Q = q + ∆q, ∆q → 0, or P = p+ ∆p, ∆p→ 0) and z ≡ 0.

Theorem 1 (Condition of the envelope existence). Let [x(p, q), y(p, q)] be a system
of close planar curves. The envelope exists if and only if the parameters p and q
satisfy (see [2]):

∂ y(p, q)

∂p
∂ x(p, q)

∂p

=

∂ y(p, q)

∂q
∂ x(p, q)

∂q

⇐⇒

∣∣∣∣∣∣∣
∂ x(p, q)

∂q

∂ y(p, q)

∂p
∂ x(p, q)

∂q

∂ y(p, q)

∂p

∣∣∣∣∣∣∣ = 0 .
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Proof: Let us consider two curves belonging to above stated system. The second
curve can be written as [x(P,Q), y(P,Q)] and the parameters values p, P, q,Q corre-
spond to their intersection point. If these curves are close, the intersection point is
close to the contact point of the curves with their envelope. The intersection point
must satisfy:

x(p, q) = x(P,Q) and y(p, q) = y(P,Q).

The curves are close, thus satisfying the definition (1),

x(P,Q) = x(p+ ∆p, q + ∆q) and y(P,Q) = y(p+ ∆p, q + ∆q). (1)

Expanding (1) in the Taylor series leads to:

x(p, q) = x(p, q) +
∞∑
i=1

∂i x(p, q)

i! ∂pi
(∆p)i +

∞∑
i=1

∂i x(p, q)

i! ∂qi
(∆q)i

y(p, q) = y(p, q) +
∞∑
i=1

∂i y(p, q)

i! ∂pi
(∆p)i +

∞∑
i=1

∂i y(p, q)

i! ∂qi
(∆q)i

. (2)

If i ≥ 2 we can neglect the powers (∆p)i , (∆q)i. Therefore the condition simplifies (2)
to

∂x(p, q)

∂p
∆p+

∂x(p, q)

∂q
∆q = 0 and

∂y(p, q)

∂p
∆p+

∂y(p, q)

∂q
∆q = 0. (3)

From the equations (3) the binding condition follows easily.

2. Kinematics of pick up vehicle Horal collector mechanism

The Horal pick up vehicle is a drawn forage wagon for collecting grass, hay or
straw. The basic constructive scheme of the collecting mechanism is depicted in the
Figure 1, see [3] for the technical parameters. The axis of the drive shaft was chosen
as origin of the coordinate system. The propelling handle r, which is at the point
B ≡ [Bx(t), By(t)], is linked by a joint to the two-part work rod L2–L3. These two
parts form an angle f . The end of the upper part of the work rod with length L2 is
joined at the point C ≡ [Cx(t), Cy(t)] with an additional handle of length L1 which
can freely rotate with its other end around point of coordinates A ≡ [Ax, Ay]. The
free working point, marked with P creates the curve [X(t), Y (t)]. First we would
like to determine the position of the additional point D ≡ [Dx(t), Dy(t)] which
corresponds to the position of the work point P when the two parts L2 and L3 are
parallel. Then we can rotate the point D around point B by the angle f to calculate
the position of work point P .

3. Determination of the trajectories of individual points of the work rod

All necessary calculations are carried out in program Maple, [1]. Considering
the page restrictions for this article the output of the program is suppressed apart
from a few exceptions. The specifications of the variables, important points and the
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Figure 1: The constructive schema

coordinate system can be seen in Figure 1. The dimensions and the coordinates saved
in the variable Ksu are set in meters. The driving handle rotates to left direction
with speed of one revolution per second.
> restart; with(plots): Ksu:=[Ax=0.25,Ay=0.03,r=0.15,L1=0.23,L2=0.22,L3=0.30,

f=55*Pi/1800,omega=-2*Pi];

> Dx:=Bx+(Bx-Cx)*L3/L2: Dy:=By+(By-Cy)*L3/L2:

> X:=(Dx-Bx)*cos(f)+(Dy-By)*sin(f)+Bx;Y:=(Bx-Dx)*sin(f)+(Dy-By)*cos(f)+By;

The current coordinates of the joint C are determined as the intersection point
of the circles c1 ≡ ([Bx(t), By(t)], L2]) and c2 ≡ ([Ax, Ay], L1). The point with y
positive is chosen from both intersections.

> CB:=(x-Bx)^2+(y-By)^2=L2^2; CA:=(x-Ax)^2+(y-Ay)^2=L1^2;

> SolC:=[allvalues(solve({CB,CA},{x,y}))]: SolCf:=subs(Bx=r,By=0,Ksu,SolC);

> SolC:=zip((u,v)->‘if‘(subs(u,y)>0,v,NULL),SolCf,SolC)[]:

> Cx:=subs(SolC,x): Cy:=subs(SolC,y): Bx:=r*cos(omega*t); By:=r*sin(omega*t);

Now we choose ten points on both parts of the work rod and draw their trajecto-
ries. For the upper part L2 these trajectories are marked light gray, for lower part L3
in dark gray, see Figure 2. The parameter λ determines the positions of the points.

> Lambda1:=1/N1*[$1..N1-1]: Lambda2:=1/N2*[$1..N2-1]: RL3x:=Bx+(X-Bx)*lambda:

> RL3y:=By+(Y-By)*lambda: RL2x:=Bx+(Cx-Bx)*lambda: RL2y:=By+(Cy-By)*lambda:

> G7:=plot([seq(subs(Ksu,[RL3x,RL3y,t=0..1]),lambda=Lambda1)],color=red):

> G8:=plot([seq(subs(Ksu,[RL2x,RL2y,t=0..1]),lambda=Lambda2)], color=blue):

> G9:=plot(evalf([seq(subs(Ksu,[Bx,By]),t=T)]),style=point,color=black):

> G10:=textplot(evalf([seq(subs(Ksu,[Bx,By,cat(" ",convert(evalf(t,2),string))]),

t=T)]),color=black,align=right, font=[HELVETICA,BOLD,12]):

> display({G4,G5,G6,G7,G8,G9,G10},labels=["x [m]","y [m]"]);
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From Figure 2 it is obvious that two envelopes really exist for both systems of
curves which delimit the work area of rods L2 and L3.

In order to estimate when individual points of both rods reach contact with the
envelope, the position of the joint B is highlighted in the time period of 1/10 of the
work period.
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Figure 2: Trajectories of the 10 points on the rods L2 and L3

4. Envelope construction

The systems of the light and dark gray curves are two-parametric systems sat-
isfying the definition of the planar close curves, see page 17. The first parameter
is the time t, which determines the position of work rod, the second parameter λ
determines position of point on the rod. By using the binding condition between
both parameters we can determine the points that constitute the envelopes of both
systems of curves according to equation (1). The binding conditions O2 for rod L2
and O3 for rod L3 are very complicated expressions and therefore it pays to use the
Maple optimization facility.

Because the binding conditions O2 and O3 are non-linear implicit equations, it
is necessary to execute the following calculations numerically.

> t:=’t’: lambda:=’lambda’: Digits:=24: C31:=cost(O3): C21:=cost(O2):

> PO3:=optimize(makeproc(O3,t)): PO2:=optimize(makeproc(O2,t)):

> C32:=cost(PO3): C22:=cost(PO2): Savings=C31+C21-C32-C22;

Savings = 55178 multiplications +16198 functions +9372 additions−239 storage−239 assignments
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It is obvious that the optimization of Maple is very effective. Newton’s iteration
is used to determine numerically the time t for each point when this point reaches
the envelope. The use of automatic derivatives is a great advantage for computing
this step.

ILT:=proc(PROC,VAR) local var, dvar;

var:=VAR; dvar:=1;

while abs(dvar)>1e-6 do; dvar:=-PROC(var)/D(PROC)(var); var:=var+dvar; end do;

var;

end proc;

From Figure 2 it is obvious that point B whose parameter λ = 0 for both rods,
reaches the left envelope at time t ≈ 0.7 s and the right shell at time t ≈ 1 s. These
time values can be used as an input data of iterative procedure. If there is a shift
from point B to a close point (a little shift corresponds to ∆λ → 0), then it is
possible to determine the time from binding condition (1) by means of the iterative
procedure ILT when this close point reaches the envelope. The final time t used
by the previous point for reaching the envelope is used as initial value for the next
iteration.

The time values tk of reaching the envelope for individual values of λ will be
saved as ordered pairs [λk, tk] which will be used to draw envelope in detail, at the
end of the calculation, see Figure (3).

> lambda:=0; tau31:=ILT(PO3,0.7); tau32:=ILT(PO3,1.0);

> tau21:=ILT(PO2,0.7); tau22:=ILT(PO2,1.0); LT31:=[[0,tau31]];

> LT32:=[[0,tau32]]; LT21:=[[0,tau21]]; LT22:=[[0,tau22]];

> for lambda from 0.01 to 1 by 0.01 do;

tau31:=ILT(PO3,tau31);tau32:=ILT(PO3,tau32);tau21:=ILT(PO2,tau21);

tau22:=ILT(PO2,tau22);LT31:=[LT31[],[lambda,tau31]];

LT32:=[LT32[],[lambda,tau32]];LT21:=[LT21[],[lambda,tau21]];

LT22:=[LT22[],[lambda,tau22]];

> end do:

> Digits:=10; lambda:=’lambda’;

> O31:=map(u->evalf(subs(Ksu,lambda=u[1],t=u[2],[RL3x,RL3y])),LT31):

> O32:=map(u->evalf(subs(Ksu,lambda=u[1],t=u[2],[RL3x,RL3y])),LT32):

> O21:=map(u->evalf(subs(Ksu,lambda=u[1],t=u[2],[RL2x,RL2y])),LT21):

> O22:=map(u->evalf(subs(Ksu,lambda=u[1],t=u[2],[RL2x,RL2y])),LT22):

> G11:=plot([O31,O32,O21,O22],color=black,thickness=3):

> display({G4,G5,G6,G7,G8,G11},labels=["x [m]","y [m]"]);

5. Conclusion

The process described in this article can be generalized to compute areas and
envelopes for other curves. This method can be used to avoid contacts of different
moving parts. For example, Figure 3 demonstrates that there exists an area inside
the Horal collector mechanism passed by three different components.
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It can also be used to find points of maximal deflection of the trajectory, so
called dead points of working mechanisms. If a component passes through this point
some of its points have maximum acceleration, tangent or normal. Taking these
accelerations into account is essential for proper construction of the components.
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Abstract

The article is devoted to the simulation of viscous incompressible fluid flow based
on solving the Navier-Stokes equations. As a numerical model we chose isogeometrical
approach. Primary goal of using isogemetric analysis is to be always geometrically ex-
act, independently of the discretization, and to avoid a time-consuming generation of
meshes of computational domains. For higher Reynolds numbers, we use stabilization
techniques SUPG and PSPG. All methods mentioned in the paper are demonstrated
on a standard test example – flow in a lid-driven cavity.

1. Introduction

Typically in engineering practice, design is done in CAD systems and meshes,
needed for the finite element analysis, are generated from CAD data. Primary goal
of using isogeometric analysis is to be geometrically exact, independently of the
discretization. Then we do not need to create any other mesh - the mesh of the
so-called “NURBS elements” is acquired directly from CAD representation. Further
refinement of the mesh or increasing the order of basis functions are very simple,
efficient and robust.

2. NURBS Surfaces

NURBS surface of degree p, q is determined by a control net P (of control points
Pi,j, i = 0, . . . , n, j = 0, . . . ,m), weights wi,j of these control points and two knot
vectors U = (u0, . . . , un+p+1), V = (v0, . . . , vm+q+1) and is given by a parametrization

S(u, v) =

∑n
i=0

∑m
j=0 wi,jPi,jNi,p(u)Mj,q(v)∑n

i=0

∑m
j=0wi,jNi,p(u)Mj,q(v)

=
n∑
i=0

m∑
j=0

Pi,jRi,j(u, v). (1)
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B-spline basis functions Ni,p(u) and Mj,q(v) are determined by knot vectors U and V
and degrees p and q, respectively, by a formula (for Ni,p(u), Mj,q(v) is constructed
by the similar way)

Ni,0(u) =

{
1 ui ≤ t < ui+1

0 otherwise

Ni,p(u) =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u). (2)

Knot vector is a non-decreasing sequence of real numbers which determines the dis-
tribution of a parameter on the corresponding curve/surface. B-spline basis functions
(see Figure 1) of degree p are Cp−1-continuous in general. Knot repeated k times in
the knot vector decreases the continuity of B-spline basis functions by k−1. Support
of B-spline basis functions is local – it is nonzero only on the interval [ti, ti+p+1] in the
parameter space and each B-spline basis function is non-negative, i.e., Ni,p(t) ≥ 0,∀t.
See [7] for more information.

T = (0, 1, 2, . . . , 7), p = 1 T = (0, 1, 2, . . . , 7), p = 3

T = (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4) T = (0, 0, 0, 1, 2, 2, 3, 3, 3)

Figure 1: B-spline basis functions

3. Stationary Navier-Stokes equations

The model of viscous flow of an incompressible Newtonian fluid can be described
by the Navier-Stokes equations in the common form

∇p+ u · ∇u− ν∆u = f,
∇ · u = 0,

(3)

where u = u(x) is the vector function describing flow velocity, p = p(x) is the pres-
sure normalized by density function, ν describes kinematic viscosity and f additional
body forces acting on the fluid. The boundary value problem is considered as the
system (3) together with boundary conditions

u = w on ∂ΩD (Dirichlet condition)

ν
∂u

∂n
− np = 0 on ∂ΩN (Neumann condition).

(4)
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If the velocity is specified everywhere on the boundary, then the pressure solution is
only unique up to a (hydrostatic) constant.

Let V be a velocity solution space and V0 be the corresponding space of test
functions, i.e.,

V = {u ∈ H1(Ω)d|u = w on ∂ΩD}
V0 = {v ∈ H1(Ω)d|v = 0 on ∂ΩD}.

(5)

Then a weak formulation of the boundary value problem is: find u ∈ V and p ∈ L2(Ω)
such that

ν

∫
Ω

∇u : ∇v +

∫
Ω

(u · ∇u)v −
∫

Ω

p∇ · v =

∫
Ω

f · v ∀v ∈ V0∫
Ω

q∇ · u = 0 ∀q ∈ L2(Ω)

3.1. Approximation using isogeometric analysis

We define the finite-dimensional spaces V h ⊂ V , V h
0 ⊂ V0, W

h ⊂ L2(Ω) and their
basis functions. We want to find uk+1

h ∈ V h and pk+1
h ∈ W h such that for all vh ∈ V h

0

and qh ∈ W h it holds

ν

∫
Ω

∇uk+1
h : ∇vh +

∫
Ω

(ukh · ∇uk+1
h )vh −

∫
Ω

pk+1
h ∇ · vh =

∫
Ω

f · vh, (6)∫
Ω

qh∇ · uk+1
h = 0. (7)

This approach is based on the Picard’s method (fixed point iteration). For isogeo-
metric analysis, basis functions of V h

0 and W h are NURBS basis functions obtained
from the NURBS description of the computational domain (for velocity and pres-
sure). We can express ukh and pkh as a linear combination of the basis functions (2)
(we use the values p = 3, q = 3 for the velocity and p = 2, q = 2 for the pressure in
the follow-up examples). These linear combinations are substituted to (6) and (7).
Linearization is done with help of Picard’s iteration and we obtain a sequence of
solutions (ukh, p

k
h) ∈ V h × W h, which converges to the weak solution. We obtain

a matrix formulation of the problem in the form A + N (uk) 0 −B>1
0 A + N (uk) −B>2
B1 B2 0

 uk+1
1

uk+1
2

pk+1

 =

 f1 − (A∗ + N ∗(uk)) · u∗1
f2 − (A∗ + N ∗(uk)) · u∗2
−B∗1 · u∗1 −B∗2 · u∗2

 ,
(8)

where

A =
[
Aij
]

1≤i≤nu
d ,1≤j≤n

u
d

, A∗ =
[
Aij
]

1≤i≤nu
d ,n

u
d+1≤j≤nu

v
,

N (u) =
[
Nij(u)

]
1≤i≤nu

d ,1≤j≤n
u
d

, N ∗(u), =
[
Nij(u)

]
1≤i≤nu

d ,n
u
d+1≤j≤nu

v
,

Bk =
[
Bkij

]
1≤i≤np,1≤j≤nu

d

, B∗k =
[
Bkij

]
1≤i≤np,nu

d+1≤j≤nu
v
,

(9)
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Aij = ν

∫
Ω

(∇Ru
i · J−1) · (∇Ru

j · J−1)| det J |,

Nij(u) =

∫
Ω

Ru
i

[(
nu
v∑

l=1

(u1l, u2l)R
u
l

)
· (∇Ru

j · J−1)

]
| det J |,

Bkij =

∫
Ω

Rp
i

[
(∇Ru

j · J−1) · ek
]
| det J |.

(10)

Here nud is the number of points where the Dirichlet boundary condition is not de-
fined and u∗1,u

∗
2 are fixed coefficient so that the Dirichlet boundary condition is

satisfied. J is the Jacobi matrix of a mapping from parametric domain to the com-
putational domain. The initial nonlinear Navier-Stokes problem was transformed to
the sequential solving of linear systems.

In the follow-up examples, we use strong imposition of Dirichlet boundary con-
ditions. If the given function w belongs to V h, Dirichlet boundary condition is
prescribed directly on control points describing ∂ΩD. Otherwise, we have to find an
approximation wh of w in V h and again prescribe this condition directly on control
points.

3.2. LBB (Ladyženskaja-Babuška-Brezzi) condition

In general, it is not possible to use an arbitrary combination of discretizations for
pressure and velocity for solving Stokes problem in order for given discretizations to
be stable, it needs to satisfy the so-called LBB condition (or inf-sup condition). It
can be shown that one of such suitable choices of discretizations is represented by
spaces with basis function of degree p (for pressure) and degree p + 1 (for velocity)
obtained with the help of p-refinement (see [1] for more details).

4. Stabilization methods

The solving of Navier-Stokes equations leads to numerical nonstability for high
Reynolds numbers. We review two methods to reduce nonphysical oscillations based
on the construction of test functions in special forms (see for example [6]).

4.1. SUPG - Streamline Upwind/Petrov-Galerkin

The first equation (3) is multiplied by test function v in the form

v = v + τSu · ∇v, (11)

where

τS =
h

2 deg(u)‖u‖

(
cothP − 1

P

)
, (12)

h is the element diameter in the direction of the u and P = ‖u‖h
2ν

is the local Péclet
number which determines whether the problem is locally convection dominated or
diffusion dominated. Then we integrate over Ω and use Picard’s linearization method.
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The first equation has the form

ν

∫
Ω

∇uk+1 : ∇v

︸ ︷︷ ︸
A

+

∫
Ω

uk · ∇uk+1

︸ ︷︷ ︸
N(u)

−
∫
Ω

pk+1∇ · v

︸ ︷︷ ︸
B

−ν
∫
Ω

∆uk+1τSu
k · ∇v

︸ ︷︷ ︸
SUPG

+

+

∫
Ω

(uk · ∇uk+1)τSu
k · ∇v

︸ ︷︷ ︸
SUPG

+

∫
Ω

∇pk+1τSu
k · ∇v

︸ ︷︷ ︸
SUPG

=

∫
Ω

f · v. (13)

4.2. PSPG (Pressure Stabilized/Petrov-Galerkin)

In this case we multiply the first equation (3) by the test function in the form

v = v + τSu · ∇v + τP∇q, (14)

where 0 ≤ τP ≤ τS and integrate over Ω. By application of Picard’s method we have

ν

∫
Ω

∇uk+1 : ∇v

︸ ︷︷ ︸
A

+

∫
Ω

uk · ∇uk+1

︸ ︷︷ ︸
N(u)

−
∫
Ω

pk+1∇ · v

︸ ︷︷ ︸
B

− (15)

−ν
∫
Ω

∆uk+1τSu
k · ∇v

︸ ︷︷ ︸
SUPG

+

∫
Ω

(uk · ∇uk+1)τSu
k · ∇v

︸ ︷︷ ︸
SUPG

+

∫
Ω

∇pk+1τSu
k · ∇v

︸ ︷︷ ︸
SUPG

+

+

∫
Ω

τP∇pk+1∇q

︸ ︷︷ ︸
PSPG

− ν
∫
Ω

τP∆uk+1∇q

︸ ︷︷ ︸
PSPG

+

∫
Ω

(uk · ∇uk+1)τP∇q︸ ︷︷ ︸
PSPG

=

∫
Ω

f · v

If we use these stabilization techniques, the LBB condition need not be satisfied.

5. Non-stationary Navier-Stokes problem

For the simplicity we solve the homogeneous problem

∂u

∂t
+∇p+ u · ∇u− ν∆u = 0 in Ω× (0, T )

∇ · u = 0 v Ω
(16)

with the initial and boundary conditions

u(x, t) = w(x, t) on ∂Ω× [0, T ],
u(x, 0) = u0(x) in Ω.

(17)

A method described in [4] is used. It is given u0, θ ∈ (0, 1
2
), α ∈ (0, 1), β ∈ (0, 1)

and we search for u1,u2, . . ., un by the following three steps:
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1. step
un+θ − un

θ∆t
+∇pn+θ − αν∆un+θ = βν∆un − un · ∇un

∇ · un+θ = 0
un+θ = gn+θ on ∂Ω

(18)

2. step

un+1−θ − un+θ

(1− 2θ)∆t
− βν∆un+1−θ + u∗ · ∇un+1−θ = αν∆un+θ −∇pn+θ

un+1−θ = gn+1−θ on ∂Ω
(19)

3. step

un+1 − un+1−θ

θ∆t
+∇pn+1 − αν∆un+1 = βν∆un+1−θ − u∗ · ∇un+1−θ

∇ · un+1 = 0
un+1 = gn+1 on ∂Ω

(20)

This is a self-starting scheme. Choosing α = β = 1
2

or setting θ = 1 − 1√
2

with

α + β = 1 gives second-order accuracy as ∆t→ 0. In particular, setting θ = 1− 1√
2

and α = 1−2θ
1−θ , β = θ

1−θ gives a method which is second-order accurate in time,
unconditionally stable and has good asymptotic properties.

6. Examples

We present test example, which is symmetric to the well-known test problem, the
so-called lid-driven cavity flow in 2D. The only difference is that the moving wall is
situated at the bottom of the cavity. This change has no compelling reason, the test
problem is sufficient for testing the solver and comparing the results with benchmark
ones.

It should be noted that the presented solver uses both presented stabilization
techniques, it means that the degree of basis functions for pressure is one less than
the degree of velocity basis functions and the PSPG stabilization technique is also
used. Using only one technique is sufficient for the stable solution and we tested
both of them as well as their combination.

6.1. Stationary flow

The first experiment is devoted to the stationary flow. So we solve stationary
Navier-Stokes equations (3) with the bottom boundary moving from left to right
(u = (ux, 0)) and no-slip boundary condition on the other walls. Figure 2 shows
the solutions with the three different Reynolds numbers and instability for higher
ones. The solution of the same problem where the stabilization methods are used
is illustrated on Figure 3. It is known (see for example [5]), that the solution of

28



Re = 2000 Re = 5000 Re = 10000

Figure 2: Stationary Navier-Stokes problem. Solution without stabilization tech-
niques. Velocity is illustrated at the upper figures, pressure is illustrated at lower
figures.

Re = 10000 Re = 10000 Re = 50000
SUPG SUPG+PSPG SUPG+PSPG

Figure 3: Stationary Navier-Stokes problem. Solution with stabilization techniques.
Velocity is illustrated at the upper figures, pressure is illustrated at lower figures.
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this test example has a stable solution only for much smaller Reynolds numbers
than presented Re = 50000. So the result for the Re = 50000 is not very physically
meaningful, it is rather an example of the used stabilization techniques. It should
be also noted, that the NURBS discretization uses fewer elements than the finite
element discretization in general. This coarse discretization causes more artificial
viscosity.

6.2. Non-stationary flow

The second example is devoted to the non-stationary flow. We solve non-station-
ary Navier-Stokes equations (16) with the same boundary conditions as in the first
example. Initial condition is described by the zero velocity inside the cavity (u = 0).
Solution with Reynolds number Re = 1000 is illustrated at Figure 4.

5s 15s 25s

Figure 4: Non-stationary Navier-Stokes problem. Solution with stabilization tech-
niques. Velocity is illustrated at the upper figures, pressure is illustrated at lower
figures.

7. Conclusion

We developed and tested an isogeometric analysis based solver for solving sta-
tionary and nonstationary flow based on Navier-Stokes equations. The presented
results show that the isogeometric analysis is a suitable tool for solving such com-
plex problems. Iterative solution of stationary Navier-Stokes equations converges
only for relatively low Reynolds numbers. Therefore, it is necessary to use stabiliza-
tion methods (e.g. SUPG, PSPG, see [2]). The problems with oscillations can be
solved by the SOLD methods [6]. The presented scheme for solving non-stationary
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Navier-Stokes equations is currently enlarged by turbulence model. The turbulence
is included by the RANS equations using k − ω model [3].
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Abstract

We derive a residual based a posteriori error estimate for the Stokes-Brinkman

problem on a two-dimensional polygonal domain. We use Taylor-Hood triangular

elements. The link to the possible information on the regularity of the problem is

discussed.

1. Introduction

In the paper we try to contribute to the technique of a posteriori error esti-
mates for the finite element solution of linearized flow problems. In this respect we
note that important results have already been obtained: concerning linear elliptic
equations let us mention I. Babuška, W. C. Rheinboldt [2], I. Babuška, R. Durán,
R. Rodŕıguez [3], concerning the Stokes problem e.g. M. Ainsworth, J. T. Oden [1],
R. E. Bank, D. Welfert [5], C. Carstensen, S. Jansche [7], C. Johnson, R. Rannacher,
M. Boman [12], R. Verfürth [15].

The goal of this paper is to link the problem of a posteriori error estimates as
much as possible to the information on the regularity of the solution.

Let us illustrate it first on the Dirichlet problem for the Poisson equation

−∆u = f in Ω,

u = 0 on ∂Ω, (1)

where Ω is a polygonal domain in R2. Let uh be the finite element solution of (1),
with linear triangular elements. Let us denote

e = u− uh,
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the approximation error, and

R(uh) = f +∆uh,

the residual. Following the technique of K. Eriksson et al. [10], we first express the
error by means of product of residual and solution of the dual problem, then use the
Galerkin orthogonality and get the estimate of the error, in the L2-norm:

‖e‖20 ≤
∑

K∈Th

{

‖R(uh)‖0,K‖ϕ− πhϕ‖0,K +
∑

l∈∂K

∥

∥

∥

∥

1

2

[[

∂uh

∂n

]]

l

∥

∥

∥

∥

0,l

‖ϕ− πhϕ‖0,l

}

, (2)

where ϕ is the solution of the dual problem

−∆ϕ = e in Ω,

ϕ = 0 on ∂Ω, (3)

πhϕ means the interpolant of ϕ. The sum in (2) is taken over all triangles in the
triangulation Th, the symbol

[[

∂uh

∂n

]]

l
means the jump of the normal derivative ∂uh

∂n
over the edge l of the triangle K.
Let us now distinguish 3 cases:

A) General polygonal domain Ω:
Let hK be the largest side of the triangle K. The interpolation property together
with the (low) regularity of the dual problem (3) yield

‖ϕ− πhϕ‖0,K ≤ CIhK‖ϕ‖1 ≤ CICRhK‖e‖0.

Combining this with (2), we come to the a posteriori error estimate

‖e‖0 ≤ CICR

∑

K∈Th

hK

{

‖R(uh)‖0,K + h
−

1

2

K

∑

l∈∂K

∥

∥

∥

∥

1

2

[[

∂uh

∂n

]]

l

∥

∥

∥

∥

0,l

}

. (4)

B) Convex polygon Ω:
Now the regularity of the dual problem (3) is higher, cf. R.B. Kellogg,
J. E. Osborn [13], and together with the interpolation property it gives

‖ϕ− πhϕ‖0,K ≤ CIh
2
K‖ϕ‖2 ≤ CICRh

2
K‖e‖0.

Combining this with (2), we come to the more precise a posteriori estimate

‖e‖0 ≤ CICR

∑

K∈Th

h2
K

{

‖R(uh)‖0,K + h
−

1

2

K

∑

l∈∂K

∥

∥

∥

∥

1

2

[[

∂uh

∂n

]]

l

∥

∥

∥

∥

0,l

}

. (5)

C) Nonconvex polygon Ω with known singularity:
It is well-known that the solution near the nonconvex corner, in the local spherical
coordinates, has the form

u(r, ϑ) = rγw(ϑ),
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where r is the distance from the corner, γ ∈ (0, 1). For instance, the case of the
L-shaped domain with the interior angle ω = 3

2
π gives γ = 2

3
, cf. also [6]. Now the

interpolation together with the above regularity gives

‖ϕ− πhϕ‖0,K ≤ CIh
1+γ−ε
K ‖ϕ‖H1+γ−ε ≤ CICRh

1+γ−ε
K ‖e‖0, ∀ε > 0,

which, combined with (2), finally leads to the a posteriori estimate

‖e‖0 ≤ CICR

∑

K∈Th

h1+γ−ε
K

{

‖R(uh)‖0,K + h
−

1

2

K

∑

l∈∂K

∥

∥

∥

∥

1

2

[[

∂uh

∂n

]]

l

∥

∥

∥

∥

0,l

}

, (6)

valid ∀ε > 0. Of course, in (6) the parameter γ applies only in the nearest neighbor-
hood of the corner.

Comparing the estimates (4), (5), (6) we see that the a posteriori error estimate
depends significantly on the regularity of the problem. Having this in mind, we try
to derive the a posteriori error estimate for the Stokes-Brinkman problem.

2. The Stokes-Brinkman model

Let Ω be a bounded Lipschitzian domain, Ω ⊂ R2, which consists of two parts:
porous part Ωp and fluid part Ωf , Ω̄ = Ω̄p ∪ Ω̄f . The Stokes-Brinkman equation
representing a mathematical model of a single phase flow in a porous/free flow media
has the following form

νK−1v +∇p− ν∗∆v = f in Ω, (7)

∇ · v = 0 in Ω, (8)

v = w on ∂ΩD,
∂v

∂n
− np = s on ∂ΩN , (9)

where v is the vector of velocity, P is the pressure, f is the vector of external force,
n is the outward-pointing normal to the boundary, ν∗ is the effective viscosity and
ν - the physical viscosity - is a uniform constant in the entire domain Ω. K is
a symmetric permeability tensor, which in Ωp is equal to the Darcy permeability of
the porous media. Note that with the choice ν∗ = 0 in the vugular region Ωp, the
equation (7) reduces to the problem of Darcy’s law. On the other hand by choosing
kij → ∞ (or very large) in fluid domain Ωf , the equation (7) reduces to the problem
of Stokes flow (here ν∗ is taken equal to the physical fluid viscosity ν). Thus, the
Stokes or Darcy’s equations can be obtained by suitable choices of the parameters ν∗

and K by defining them in vugular and rock matrix regions, respectively.
In the porous region (K < ∞) it is known [14], that for moderately small per-

meabilities and pore fractions, the diffusive term ν∗∆v, where ν∗ takes values close
to the fluid viscosity ν, intoroduces only a small perturbation of the velocity and
pressure fields in comparison with a pure Darcy law with ν∗ = 0. In [14] it is shown
that Stokes-Brinkman equation with the choice ν∗ = ν in the porous region is very
close to the solution of coupled Stokes and Darcy’s equations.
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The advantage of Stokes-Brinkman model is usage of uniform equations for porous
and free flow domains. Boundary conditions between these two domains are repre-
sented by K. This approach makes it possible to model heterogeneous material.
Moreover, by a numerical point of view, it is easier to solve a monolithic system such
as Stokes-Brinkman, in contrast to a coupled Darcy-Stokes system which requires
an additional iterative scheme. Also, near the interface, Stokes-Brinkman equations
allow us to avoid the typical grid refinement issues necessary for solving the interface
between Darcy and Stokes region. On the other hand usage of Taylor-Hood elements
for the whole domain requires big load of memory.

3. Weak formulation of Stokes-Brinkman equations

In what follows we denote G = K−1 and assume G is symmetric.
For the weak formulation we denote

H1
E := {u ∈ H1(Ω)2|u = w na ∂ΩD}, (10)

H1
E0

:= {v ∈ H1(Ω)2|v = 0 na ∂ΩD}. (11)

Now the weak form of the Stokes-Brinkman problem reads:
Find v ∈ H1

E0
and p ∈ L2

0(Ω) such that

ν∗

∫

Ω

∇v : ∇v∗ + ν

∫

Ω

vTGv∗ −

∫

Ω

p∇ · v∗ =

∫

Ω

f · v∗ ∀v∗ ∈ H1
E0
, (12)

∫

Ω

q∇ · v = 0 ∀q ∈ L2
0(Ω). (13)

Here L2
0(Ω) is the space of L2 functions having mean value zero.

On the space V =
(

H1
0(Ω)

2 × L2
0(Ω)

)

we define the bilinear form

A
(

{v, p}, {v∗, p∗}
)

= ν∗

∫

Ω

∇v : ∇v∗ + ν

∫

Ω

vTGv∗ −

∫

Ω

p∇ · v∗ −

∫

Ω

p∗∇ · v (14)

where (., .)0 means the scalar product in L2.
In what follows we assume w = 0, i. e. only zero Dirichlet condition on the whole

boundary ∂Ω. Problem (12), (13) can be written as follows: find {v, p} ∈ V , such
that

A
(

{v, p}, {v∗, p∗}
)

= (f , v∗)0, ∀{v∗, p∗} ∈ V. (15)

4. Finite element approximation

We suppose Ω to be a polygon, for simplicity. Let Th be regular [11] triangulations
of Ω. Let Xh, Mh be the finite element spaces of Taylor-Hood elements (cf. e.g.
F. Brezzi, M. Fortin [4]), i.e.

Xh = {v ∈ H1
0 (Ω)

2, v/T ∈ P 2(T )2, T ∈ Th},

Mh = {p ∈ L2
0(Ω), p/T ∈ P 1(T ), T ∈ Th}.
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These satisfy the Babuška-Brezzi condition [4]. The finite element approximation of
the Stokes-Brinkman problem consists in finding {vh, ph} ∈ Xh ×Mh such that

A
(

{vh, ph}, {v
∗

h, p
∗

h}
)

= (f , v∗

h)0 , ∀{v∗

h, p
∗

h} ∈ Xh ×Mh. (16)

5. A posteriori error estimate

We follow the idea of K. Eriksson et al. [10] who proved the a posteriori error
estimate for the Poisson equation. We define the residual components by the relations

R1{vh, ph} = f + ν∗∆vh − νGvh −∇ph, R2{vh, ph} = div vh. (17)

Next we study the properties of the errors

ev = v − vh , ep = p− ph ,

where {v, p} is the exact solution of (15), {vh, ph} is the approximate solution defined
in (16). The V norm of {ev, ep} is

‖{ev, ep}‖
2
V = (ev, ev)1 + (ep, ep)0 =

∫

Ω

(ev · ev +∇ev : ∇ev) +

∫

Ω

epep.

By the Poincaré-Friedrichs inequality, cf. [9], as ev ∈ H1
0 (Ω)

2

(ev, ev)1 ≤ CP

∫

Ω

∇ev : ∇ev (18)

5.1. Dual Stokes-Brinkman problem

To study the above norms we introduce the dual Brinkman-Stokes problem by

−ν∗∆ϕv + νGϕv +∇ϕp = −∆ev in Ω, here ∆ev ∈ H−1(Ω)

−div ϕv = ep in Ω, (19)

ϕv = 0 on ∂Ω,

which in a weak form is: find ϕv ∈ H1(Ω)2 and ϕp ∈ L2
0(Ω) such that

(ν∗∇ϕv,∇v∗)0 + ν((Gϕv), v
∗)− (ϕp,∇v∗)0 = (∇ev,∇v∗)0, ∀v∗ ∈ H1

0(Ω)
2,

(−div ϕv, p
∗)0 = (ep, p

∗)0, ∀p∗ ∈ L2
0(Ω), (20)

or, using the notation (14)

A({ϕv, ϕp}, {v
∗, p∗}) = (∇ev,∇v∗)0 + (ep, p

∗)0 , ∀{v∗, p∗} ∈ V . (21)

By (18) and (20) where we put v∗ = ev, p∗ = ep, we get

1

CP

(ev, ev)1 ≤ (∇ev,∇ev)0 = ν∗(∇ϕv,∇ev)0 + ν((Gϕv),ev)− (ϕp∇, ev)0

= ν∗(∇ϕv,∇v)0 + ν((Gϕv)v)− (ϕp∇, v)0 − ν∗(∇ϕv,∇vh)0

− ν((Gϕv)vh) + (ϕp∇, vh)0, (22)

(ep, ep)0 = (ep,−div ϕv)0 = −(p∇,ϕv)0 + (ph∇,ϕv)0. (23)
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5.2. Estimation of the error by means of the residual and solution of the
dual problem

Combining (22), (23), and (19) we get (as CP ≥ 1)

1

CP

{

(ev, ev)1 + (ep, ep)0

}

≤ ν∗(∇v,∇ϕv)0 + ν((Gvϕv))− (p,∇ϕv)0 − (∇v, ϕp)0

+
∑

K∈Th

{−ν∗(∇ϕv,∇vh)0,K − ν((Gvhϕv)) + (ph,∇ϕv)0,K + (ϕp,∇vh)0,K}

= (f ,ϕv)0 +
∑

K∈Th

{

(ν∗∆vh,ϕv)0,K −

∫

∂K

ν∗
∂vh

∂n
ϕvds

}

− ν((Gvhϕv)) (24)

−
∑

K∈Th

{

(∇ph,ϕv)0,K +

∫

∂K

phϕv · nds + (div vh, ϕp)0,K

}

=
∑

K∈Th

(f + ν∗∆vh − ν((Gvhϕv))−∇ph,ϕv)0,K +
∑

K∈Th

(div vh, ϕp)0,K

−
∑

K∈Th

∫

∂K

ν∗∂vh

∂n
ϕvds+

∑

K∈Th

∫

∂K

phϕv · nds

In view of (16) we also have

∑

K∈Th

(f + ν∗∆vh − νGvh −∇ph, v
∗

h)0,K + (div vh, p
∗

h)0

= (f , v∗
h)0 +

∑

K∈Th

{

(−ν∗∇vh,∇v∗
h)0,K − ν(Gvh, v

∗
h) +

∫

∂K

ν∗
∂vh

∂n
v∗
hds

}

+ (∇ph, v
∗

h)0 −
∑

K∈Th

∫

∂K

phv
∗

h · nds+ (div vh, p
∗

h)0 (25)

= 0 +
∑

K∈Th

∫

∂K

ν
∂vh

∂n
v∗

hds−
∑

K∈Th

∫

∂K

phv
∗

h · nds, ∀{v∗

h, p
∗

h} ∈ Xh ×Mh.

This implies, taking v∗
h = πhϕv, p

∗
h = πhϕp , the Clement interpolants, (cf. e.g. [8],

p. 146) that

∑

K∈Th

(f + ν∗∆vh − νGvh −∇ph, πhϕv) + (div vh, πhϕp)0

−
∑

K∈Th

∫

∂K

ν∗∂vh

∂n
πhϕvds−

∑

K∈Th

∫

∂K

phπhϕv · nds = 0 (26)

Now subtracting zero in (26) from (24) we get
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1

CP

{

(ev, ev)1 + (ep, ep)0

}

≤
∑

K∈Th

(f + ν∗∆vh − νGvh −∇ph,ϕv − πhϕv)0,K + (div vh, ϕp − πhϕp)0

−
∑

K∈Th

∫

∂K

ν
∂vh

∂n
(ϕv − πhϕv)ds+

∑

K∈Th

∫

∂K

ph(ϕv − πhϕv) · nds (27)

=
∑

K∈Th

(f + ν∗∆vh − νGvh −∇ph,ϕv − πhϕv)0,K + (div vh, ϕp − πhϕp)0

−
∑

K∈Th

∑

l∈∂K

∫

l

(

1

2

[[

ν
∂vh

∂n
− phn

]]

l

)

(ϕv − πhϕv)ds,

where we denoted
[[

ν
∂vh

∂n
− phn

]]

l

=

(

ν
∂vh

∂n
− phn

)/

l+

−

(

ν
∂vh

∂n
− phn

)/

l−

the jump along the common side l of two adjacent triangles. Then, using in turn
the Schwarz inequality, the interpolation properties of Xh, Mh (cf. e.g. [4]), and the
estimate of the solution of the dual problem (19) (cf. [4]), we get the inequalities

‖ev‖
2
1 + ‖ep‖

2
0

≤ CP

∑

K∈Th

{

‖R1{vh, ph}‖0,K‖ϕv − πhϕv‖0,K + ‖R2{vh, ph}‖0,K‖ϕp − πhϕp‖0,K

}

+ CP

∑

K∈Th

∑

l∈∂K

∥

∥

∥

∥

1

2

[[

ν
∂vh

∂n
− phn

]]

l

∥

∥

∥

∥

0,l

‖ϕv − πhϕv‖0,l (28)

≤ CPCI

∑

K∈Th

{

hK ‖R1{vh, ph}‖0,K ‖ϕv‖1 + ‖R2{vh, ph}‖0,K ‖ϕp‖0

}

+ CPCI

∑

K∈Th

(hK)
1

2

∑

l∈∂K

∥

∥

∥

∥

1

2

[[

ν
∂vh

∂n
− phn

]]

l

∥

∥

∥

∥

0,l

‖ϕv‖1

≤ CPCICR

∑

K∈Th

{

hK ‖R1{vh, ph}‖0,K + ‖R2{vh, ph}‖0,K

+
∑

l∈∂K

(hK)
1

2

∥

∥

∥

∥

1

2

[[

ν
∂vh

∂n
− phn

]]

l

∥

∥

∥

∥

0,l

}

·
{

‖∆ev‖−1 + ‖ep‖0
}

.

Using then the relations

‖∆ev‖−1 ≡ sup
v∗∈H1

0
,v∗ 6=0

|(∆ev, v
∗)0|

‖v∗‖1
= sup

v∗∈H1
0
,v∗ 6=0

|(∇ev,∇v∗)0|

‖v∗‖1

≤ sup
v∗∈H1

0
,v∗ 6=0

‖∇ev‖0 ‖∇v∗‖0
‖v∗‖1

≤ ‖∇ev‖0 ≤ ‖ev‖1
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we get, by (28)

{

‖ev‖1 + ‖ep‖0
}2

≤ 2
{

‖ev‖
2
1 + ‖ep‖

2
0

}

≤ 2CPCICR

∑

K∈Th

{

hK‖R1{vh, ph}‖0,K

+ ‖R2{vh, ph}‖0,K + h
1

2

K

∑

l∈∂K

∥

∥

∥

∥

1

2

[[

ν
∂vh

∂n
− phn

]]

l

∥

∥

∥

∥

0,l

}

·
{

‖ev‖1 + ‖ep‖0
}

. (29)

Upon cancelling
{

‖ev‖1 + ‖ep‖0
}

in (29) we finally get the following theorem:

Theorem 1. Let Ω be a polygon in R2. Let Th be a family of regular triangulations

of Ω. Let {vh, ph} be the Taylor-Hood approximation of the solution {v, p} of the

Stokes-Brinkman problem. Then the error {ev, ep} satisfies the following a posteriori

estimate

‖ev‖1 + ‖ep‖0 ≤ 2CPCICR

∑

K∈Th

{

hK‖R1{vh, ph}‖0,K + ‖R2{vh, ph}‖0,K

+ h
1

2

K

∑

l∈∂K

∥

∥

∥

∥

1

2

[[

ν
∂vh

∂n
− phn

]]

l

∥

∥

∥

∥

0,l

}

. (30)

where CP , CI , CR are positive constants, residuals R1 and R2 are defined in (17) .

Conclusions

The estimate in Theorem 1 applies to more general class of elements. Of course,
for Taylor-Hood elements with continuous pressure the jumps of ph along the common
sides disappear.

Let us note that for convex domains stronger regularity applies to the Stokes
problem, cf. [13], and better a posteriori error estimate may be expected.

For nonconvex domains with corners we do not obtain so strong regularity as
in [13], cf. e.g. [6], but still the a posteriori error estimate should be better than
in (30), as it was for the Poisson equation in (2).
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Abstract

To use wavelets efficiently to solve numerically partial differential equations in

higher dimensions, it is necessary to have at one’s disposal suitable wavelet bases. Ideal

wavelets should have short supports and vanishing moments, be smooth and known

in closed form, and a corresponding wavelet basis should be well-conditioned. In

our contribution, we compare condition numbers of different quadratic spline wavelet

bases in dimensions d = 1, 2 and 3 on tensor product domains (0, 1)d.

1. Introduction

In recent years, several promising constructions of wavelets were proposed. We
mention, for example, a construction of spline-wavelet bases on the interval proposed
in [1]. Their bases are compactly supported and generate multiresolution analyses
on the unit interval with the desired numbers of vanishing wavelet moments for
primal and dual wavelets. Moreover, dual wavelets are also compactly supported.
Here, we use recently proposed wavelets based on quadratic splines [2, 3, 4, 5] and
propose one other modification. These wavelets have shorter supports, are better
conditioned but dual wavelets are not compactly supported. Due to their properties
these wavelet bases can be used in the wavelet Galerkin method as well as in adap-
tive wavelet methods for solving second-order elliptic problems with homogeneous
Dirichlet boundary conditions.

2. Wavelet bases

We consider here families Ψ = {ψλ, λ ∈ J } ⊂ L2(0, 1) of functions (wavelets).
Let J be an infinite index set and J = JΦ∪JΨ, where JΦ is a finite set representing
scaling functions living on the coarsest scale. Any index λ ∈ J is of the form
λ = (j, k), where |λ| = j denotes a scale and k denotes spatial location. At last,
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for s ≥ 0 the space Hs will denote a closed subspace of the Sobolev space Hs (0, 1),
defined e.g. by imposing homogeneous boundary conditions at one or both endpoints,
and for s < 0 the space Hs will denote the dual spaceHs := (H−s)′. ‖.‖Hs will denote
the corresponding norm. Further l2(J ) will denote the space consisting of the power
summable sequences and ‖.‖l2(J ) will denote the corresponding norm.

A family Ψ = {ψλ, λ ∈ J } ⊂ L2(0, 1) is called a wavelet basis of Hs for some
γ, γ̃ > 0 and s ∈ (−γ̃, γ), if

• Ψ is a Riesz basis of Hs, that means Ψ forms a basis of Hs and there exist
constants cs, Cs > 0 such that for all b = {bλ}λ∈J ∈ l2 (J ) holds

cs ‖b‖l2(J ) ≤
∥

∥bTΨ
∥

∥

Hs ≤ Cs ‖b‖l2(J ) ,

where sup cs, inf Cs are called Riesz bounds and condΨ :=
inf Cs

sup cs
is called the

condition number of Ψ.

• Functions are local in the sense that diam (suppψλ) ≤ C2−|λ| for all λ ∈ J ,
where C is a constant independent of λ.

• Functions ψλ, λ ∈ JΨ, have cancellation properties of order m, i.e.

∣

∣

∣

∣

∫ 1

0

v(x)ψλ(x) dx

∣

∣

∣

∣

≤ 2−m|λ| |v|Hm(0,1) , ∀v ∈ Hm (0, 1) .

It means that integration against wavelets eliminates smooth parts of functions
and it is equivalent with vanishing wavelet moments of order m.

3. Scaling functions

As inner scaling functions, we use quadratic B-splines, because they have short
support and can be easily adapted to a bounded interval by employing multiple knots
at the endpoints. In the case of quadratic basis, there is necessary to add only one
boundary scaling function at each boundary to preserve polynomial exactness and
homogeneous boundary conditions. Specifically, the quadratic spline function φ(x)
is given by

φ(x) =















x2

2
x ∈ [0, 1],

−x2 + 3x− 3
2

x ∈ [1, 2],
x2

2
− 3x+ 9

2
x ∈ [2, 3],

0 otherwise

and the left boundary function φb(x) is given by

φb(x) =







−3x2

2
+ 2x x ∈ [0, 1],

x2

2
− 2x+ 2 x ∈ [1, 2],

0 otherwise.
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Then a scaling basis satisfying homogeneous Dirichlet boundary conditions is deter-
mined by

Φj =
{

φj,k/ |φj,k|H1
0
(0,1) , k = 1, . . . , 2j

}

,

where for j ≥ 2 and x ∈ [0, 1] we define

φj,k(x) = 2j/2φ(2jx− k + 2), k = 2, ..., 2j − 1,

φj,1(x) = 2j/2φb(2
jx), φj,2j(x) = 2j/2φb(2

j(1− x)).

4. Wavelets and wavelet bases

Constructed wavelets should have small support and vanishing moments and
the corresponding wavelet basis should be well-conditioned. Unlike biorthogonal
wavelets [1, 6], where primal wavelets have significantly larger support than scaling
functions and dual wavelets are local, we focus here on primal wavelets which have
the same length of support as scaling functions or shorter. Let us denote the space
spanned by the set Φj by Vj. Then, we define complement spaces Wj by Vj+1 =
Vj ⊕Wj and a wavelet basis is constructed to be the basis of Wj .

First, we look at inner wavelets with minimal support and with the number
of vanishing moments that equals to the degree of used B-splines. The quadratic
spline-wavelet is then given by

ψ(x) = −
1

4
φ(2x) +

3

4
φ(2x− 1)−

3

4
φ(2x− 2) +

1

4
φ(2x− 3).

In [2], the boundary wavelet was constructed by prescribing the number of vanishing
moments, the support in the interval [0, 5/2], homogeneous Dirichlet boundary condi-
tions and finally, it should be from the space spanned by {φb(2x), φ(2x−k) : k ∈ N0}.
This boundary wavelet is determined by

ψ1
b (x) = −

5

2
φb(2x) +

47

12
φ(2x)−

13

4
φ(2x− 1) + φ(2x− 2).

In [3], we constructed a new boundary wavelet by allowing its support to be in
the interval [0, 3] and prescribing three vanishing moments, homogeneous Dirich-
let boundary conditions and finally, it again should be from the space spanned by
{φb(2x), φ(2x − k) : k ∈ N0}. Then, there are infinitely many solutions and we
selected one that has zero wavelet coefficient corresponding to the scaling function
φ(2x− 2). Consequently, the arising system has exactly one solution up to multipli-
cation by a constant. This boundary wavelet is given by

ψ2
b (x) = −

15

2
φb(2x) +

43

4
φ(2x)−

27

4
φ(2x− 1) + φ(2x− 3).

In [4], we propose the boundary wavelet prescribing the same properties as above.
But we use the free parameter identified in [3] to ensure the orthogonality of con-
structed boundary wavelet with the nearest inner wavelet:

ψ3
b (x) = −

920

209
φb(2x) +

3697

627
φ(2x)−

569

209
φ(2x− 1)−

259

209
φ(2x− 2) + φ(2x− 3).

43



Here, we use also the above mentioned free parameter to ensure the orthogonality of
the first derivative of the constructed boundary wavelet with the first derivative of
the nearest inner wavelet:

ψ4
b (x) = −

40

13
φb(2x) +

149

39
φ(2x)− φ(2x− 1)−

23

13
φ(2x− 2) + φ(2x− 3).

Further, we look at wavelets with one vanishing moment. An inner wavelet ψ
with suppψ = [0.5, 2.5] is then given by

ψ(x) = −
1

2
φ(2x− 1) +

1

2
φ(2x− 2).

And a boundary wavelet ψb with suppψb = [0, 1.5] and with one vanishing wavelet
moment is defined by:

ψb(x) =
φb(2x)

2
−
φ(2x)

3
.

For j ≥ 2 and x ∈ [0, 1] we define

ψj,k(x) = 2j/2ψ(2jx− k + 2), k = 2, ..., 2j − 1,

ψj,1(x) = 2j/2ψb(2
jx), ψj,2j(x) = 2j/2ψb(2

j(1− x)).

We denote
Ψj =

{

ψj,k/ |ψj,k|H1
0
(0,1) , k = 1, . . . , 2j

}

.

Then the sets

Ψs = Φ2 ∪

1+s
⋃

j=2

Ψj and Ψ = Φ2 ∪

∞
⋃

j=2

Ψj

are a multiscale wavelet basis and a wavelet basis of the space H1
0 (0, 1), respectively.

The proof can be found in [5]. Multiscale wavelet bases and wavelet bases for other
construction can be defined in a similar way.

To define wavelets in higher dimensions we use the tensor product. The tensor
product of functions u and v is defined by (u⊗ v) (x1, x2) := u (x1) v (x2). We show
an example of such wavelet basis in dimension d = 2. We set

Fj =
{

φj,k ⊗ φj,l / |φj,k ⊗ φj,l|H1
0
(Ω) , k, l = 1, . . . , 2j

}

,

G1
j =

{

φj,k ⊗ ψj,l / |φj,k ⊗ ψj,l|H1
0
(Ω) , k, l = 1, . . . , 2j

}

,

G2
j =

{

ψj,k ⊗ φj,l / |ψj,k ⊗ φj,l|H1
0
(Ω) , k, l = 1, . . . , 2j

}

,

G3
j =

{

ψj,k ⊗ ψj,l / |ψj,k ⊗ ψj,l|H1
0
(Ω) , k, l = 1, . . . , 2j

}

,

where Ω = (0, 1)2. Then the sets defined by

Ψ2D
s = F2 ∪

1+s
⋃

j=2

(

G1
j ∪G

2
j ∪G

3
j

)

, Ψ2D = F2 ∪
∞
⋃

j=2

(

G1
j ∪G

2
j ∪G

3
j

)

(1)

are a wavelet basis and a multiscale wavelet basis of the space H1
0 (Ω).
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5. Condition numbers

We compute condition numbers of stiffness matrices corresponding to the follow-
ing Dirichlet problem

−

d
∑

i=1

∂2u

∂x2i
= f in Ω = (0, 1)d with u = 0 on ∂Ω

discretized using above mentioned wavelet bases. These condition numbers are
closely related to the condition number of wavelet basis of the space H1

0 (Ω). In
all tables, B3i will denote the wavelet basis with three vanishing wavelet moments
and with boundary wavelet ψi

b, B1 will denote the wavelet basis with one vanishing
wavelet moment and finally n will denote a number of used basis functions.

n B31 B32 B33 B34 B1
8 8.9 5.4 3.9 3.5 2.8
16 10.1 6.1 4.6 4.4 2.8
32 10.6 6.5 4.9 4.7 2.8
64 10.8 6.6 5.0 4.8 2.8
128 10.9 6.7 5.1 4.9 2.8
256 10.9 6.8 5.2 4.9 2.8
512 10.9 6.8 5.2 4.9 2.8
1024 11.0 6.8 5.2 4.9 2.8
2048 11.0 6.9 5.2 4.9 2.8
4096 11.0 6.9 5.2 4.9 2.8

Table 1: Condition numbers for d = 1

n B31 B32 B33 B34 B1
64 56.6 29.3 18.7 21.9 7.5
256 83.6 42.1 29.9 32.6 11.0
1096 98.7 50.2 36.7 38.0 13.6
4096 107.5 55.4 40.6 40.8 15.3
16384 113.1 58.7 43.1 42.5 16.5
65536 116.8 61.0 44.6 43.7 17.3
262144 119.4 62.5 45.7 44.4 17.9
1048576 121.3 63.7 46.5 44.9 18.3

Table 2: Condition numbers for d = 2
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n B31 B32 B33 B34 B1
512 470.8 227.7 169.3 208.5 47.4
4096 815,9 402.2 313.2 362.6 85.0
32768 1027,1 500.9 389.1 429.5 113.8
262144 1153,6 552.9 425.0 459.0 132.9
2097152 1230,7 581.8 443.5 474.1 145.3

Table 3: Condition numbers for d = 3
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[2] Černá, D., Finěk, V. and Šimůnková, M.: A quadratic spline-wavelet basis on
the interval. In: J. Chleboun, K. Segeth, J. Š́ıstek, and T. Vejchodský (Eds.),
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Abstract

In this paper, we discuss the choice of weights in averaging of local (subdomain)
solutions on the interface for the BDDC method (Balancing Domain Decomposition
by Constraints). We try to find relations among different choices of the interface
weights and compare them numerically on model problems of the Poisson equation and
linear elasticity in 3D. Problems with jumps in coefficients of material properties are
considered and both regular and irregular interfaces between subdomains are tested.

1. Introduction

An important ingredient of many domain decomposition methods is a technique
used for determining a continuous approximation of solution at interface from discon-
tinuous local solutions from adjacent subdomains. A standard approach described
already in [3] is to compute global value of any given interface unknown as some
weighted average of local (subdomain) values of the corresponding unknown only.
Very often just arithmetic average is used, based simply on counting number of sub-
domains to which the interface unknown belongs. More sophisticated method is to
derive the weights from diagonal stiffness of subdomain Schur complements with
respect to the interface. As these complements are typically not computed explic-
itly in efficient implementations, the diagonal of the Schur complement is sometimes
approximated by the diagonal of the original matrix (also known as the diagonal stiff-
ness scaling). Another method is the so called ρ-scaling (see e.g. [5] for theoretical
analysis). However, it is limited to the case of material coefficients constant on each
subdomain, which is often too restrictive requirement for applications, and it is also
not preserved in our examples. Nevertheless, we tried its modification, using mate-
rial coefficients on individual elements instead. In any case, this approach requires
access to material coefficients from the equations solver in an implementation.
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A different recent method of evaluation of global values, called deluxe scaling,
represents solving local problems containing two or more adjacent subdomains (see
e.g. [4]). Implementation of this method is quite demanding, and it is not covered by
our numerical experiments, although we involve it in our theoretical considerations.

Our method of averaged unit jump was originally derived by approximate mini-
mization of the upper bound on the condition number of the preconditioned operator
(see e.g. [1]).

In this paper, we analyze theoretically relationships among methods mentioned
above. We use an abstract formulation of the BDDC preconditioner presented in [6]
in order to obtain a clearer form of our results formulated in Lemma 1 that seems to
be new. We also test the methods numerically on 3D Poisson and linear elasticity
problems, together with two heuristic methods (called unit jump and unit load ; unit
load was proposed and tested on 2D Poisson problem in [2]).

2. Notation

Consider a system of linear equations Ku = f obtained by discretization of
boundary value problem with a self-adjoint operator defined on a domain Ω. Let
us decompose the domain Ω into N non-overlapping subdomains Ωi, i = 1, . . . , N .
Unknowns common to at least two subdomains are called interface unknowns, and
the union of all interface unknowns form the interface. The first step is the reduction
of the problem to the interface. We thus arrive at the Schur complement problem
for the interface unknowns Ŝ û = ĝ, where Ŝ is a symmetric positive definite (SPD)
matrix. This system is solved by the preconditioned conjugate gradient method
(PCG). More detailed description of this reduction to the interface can be found
in [2].

According to [6], let us interpret the matrix Ŝ as an operator Ŝ : Ŵ → Ŵ ′, where

Ŵ is a finite dimensional linear space. Let us introduce another space W̃ such that
Ŵ ⊂ W̃ (in terms of subdomains, the space W̃ represents functions which can be
discontinuous across parts of the interface, it means they can have different values
of interface unknowns on individual subdomains – there can be a jump across the
interface). Let S̃ be an extension of Ŝ to W̃ . Denote R the natural injection from

Ŵ to W̃ , then we have Ŝ = RT S̃R . The space W̃ has to be chosen so that the
extended operator S̃ is positive definite and its inversion can be applied efficiently.
Then the BDDC preconditioner can be expressed as

M = ES̃−1ET , (1)

where operator ET represents splitting of the residual to subdomains, S̃−1 stands
for solution on subdomains and the coarse level, and E represents averaging of
subdomain solutions back to the global problem. The condition number κ of the
preconditioned operator MŜ is bounded by

κ ≤ ||RE||2S̃ , (2)
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where the energetic norm on the right-hand side is defined by the scalar product
as ||u||2S̃ = 〈S̃u, u〉. The relationship (2) was proved in [6] assuming that ER = I,
which means that if the problem is split into subdomains and then projected back
to the whole domain, the original problem is obtained.

3. Theoretical background of the averaging methods

In every step of PCG, for the given residual r ∈ Ŵ ′, an approximation Mr of
its preimage e = Ŝ−1r is to be computed. Our goal is to construct the averaging
operator E so that good convergence of the PCG method is achieved, and its action
is not too expensive. There is an upper bound on the distance of e from Mr :

Lemma 1. Assume ER = I and use the notation from Section 2. Denote w =
S̃−1ETr. Then the following estimation holds:

||e−Mr ||Ŝ ≤ ||Re− w ||S̃ + ||(I −RE)w ||S̃ , (3)

where ||.||Ŝ and ||.||S̃ are the energetic norms in Ŵ and W̃ , respectively.
Square of the first term on the right-hand side can be expressed as

||Re− w ||2
S̃

= 〈Mr, r〉 − ||e||2
Ŝ
. (4)

Proof. The inequality (3) is obtained from triangle inequality and the fact, that the

energetic norms in Ŵ and W̃ are equal:

||e−Mr ||Ŝ = ||e− Ew ||Ŝ = ||Re−REw ||S̃ ≤ ||Re− w ||S̃ + ||w −REw ||S̃ .

Rewriting square of the first term on the right-hand side of the inequality (3):

||Re− w||2
S̃

= 〈Re− w, S̃(Re− w)〉 = 〈Re− S̃−1ETr, S̃Re− S̃S̃−1ETr〉
= 〈Re, S̃Re〉 − 〈Re,ETr〉 − 〈S̃−1ETr, S̃Re〉+ 〈S̃−1ETr, ETr〉
= 〈e, RTS̃Re〉 − 〈ERe, r〉 − 〈r, ERe〉+ 〈ES̃−1ETr, r〉
= 〈e, Ŝe〉 − 2〈e, r〉+ 〈Mr, r〉 = 〈Mr, r〉 − 〈e, r〉 = 〈Mr, r〉 − ||e||2

Ŝ
.

It seems that nearly all methods used so far for averaging have some connection
with minimizing the second term ||(I−RE)w ||S̃ on the right-hand side of (3), as we
show bellow. Moreover, there is also a connection with the upper bound (2), because
norms of the complementary projections are equal: ||RE||S̃ = ||I −RE||S̃ .

Our approach in [1] to find proper weights for averaging (in other words, to find
the so called weight matrix) is to minimize the term ||(I − RE)u ||S̃ for some given

u ∈ W̃ under the standard assumption that the global value of any given interface
unknown is computed as weighted average of subdomain values of the corresponding
unknown only – it means that the weight matrix is supposed to be diagonal. For two
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adjacent subdomains (with no coarse space) it leads to a system of linear equations
for unknown diagonal of the weight matrix A:

Ad = Ŝ−1S1d = (S1 + S2)−1S1d, (5)

where Si is the local Schur complement of the i-th subdomain, and the vector d
represents a jump across the interface in some given test vector u. For more details
see [1]. This relationship can be interpreted as: for a given jump d, find a diagonal
representation A (dependent on d) of some general matrix (S1 + S2)−1S1 that is
independent of d. And so maybe we can use this general matrix for a construction of
the averaging operator E independent of d and use the (full) matrix (S1 + S2)−1S1

instead of the diagonal matrix A. By this approach we arrive to deluxe scaling
proposed in [4]. In this method, the system (S1 +S2)v = S1r is solved for every pair
(or, in some cases, group) of adjacent subdomains in every step of the PCG method,
where r is a local residual on the appropriate part of the interface.

As we would like to avoid solving that large number of local systems, we look for
some simplification of system (5). One option is to omit all off-diagonal entries of
matrices Si, which leads to the choice of weights as ratios of diagonals of local and
global Schur complements. Another option is to assume that all weights on the local
interface are equal (as in the case of arithmetic average) and choose some suitable
test jump d. We have chosen a unit jump for numerical tests and call the method
averaged unit jump method.

Note: The expression (4) has led us to the idea of trying to minimize the term
〈Mr, r〉. For the case of two adjacent subdomains, using the same assumption of
diagonal weight matrix and using the same process of minimization as in [1], we
arrive at equations

Ar = (S−1
1 + S−1

2 )−1S−1
2 r, (6)

where the vector r represents a local residual on the appropriate part of the interface.
Nevertheless, this result does not seem to bring any practical advantage compared to
system (5). Again, omitting all off-diagonal entries of matrices Si leads to the well-
known choice of weights as ratios of diagonals of local and global Schur complements.

4. Approaches for computation of weights at interface nodes

For the sake of clarity, formulas are presented again for two adjacent subdomains.
We also assume one degree of freedom per node, so that numbering of nodes and
degrees of freedom coincide. It is straightforward to generalise these methods to
more than two adjacent subdomains (on edges) or more degrees of freedom at a node.
Notation:

j . . . number of a node in numbering with regard to the interface
i . . . global number of the j-th interface node with regard to the global numbering
w1

j . . . weight at the j-th node at the interface corresponding to the first subdo-
main (the weight w2

j for the second subdomain is then w2
j = 1− w1

j )
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• aa . . . arithmetic average: w1
j = 1

2

• dk . . . fractions of diagonal entries of the system matrix K: w1
j =

k1qq
kii

, where kii is

a diagonal entry of the (global) system matrix K, k1
qq is the corresponding diagonal

entry of the local matrix for the first subdomain; q is a local number (at the first
subdomain) of the i-th node (in global numbering)

• rho . . . element-wise ρ-scaling: w1
j =

α1
j

α1
j+α2

j
, where αk

j is a local material coef-

ficient computed as an arithmetic average of material coefficients given on elements
containing the j-th node and belonging to k-th subdomain

• auj . . . averaged unit jump method: w1
j = dTS1d

dT (S1+S2)d , where d stands for test

vector equal to ones at the common face of the two subdomains and zeros otherwise
(representing jump at that face), and Sk is the local Schur complement for the k-th
subdomain

• uj . . . unit jump method: w1
j =

g2j
g1j+g2j

, where gk = (gk1 , g
k
2 , . . . )

T is the local

vector of reaction on the k-th subdomain induced by a unit jump: gk = Sk d

• ul . . . unit load method: w1
j =

v1j
v1j+v2j

, where vk = (vk1 , v
k
2 , . . . )

T is the vector of

the local solution on the k-th subdomain under unit load, i.e. with the right-hand
side equal to ones: Sk v

k = d

5. Numerical results

Our aim is to numerically compare the robustness of the approaches to averaging
listed in Section 4 with respect to two model aspects known to cause issues to domain
decomposition methods, namely (i) roughness of the interface among subdomains,
(ii) jumps in material coefficients inside the domain.

Following our preliminary 2D numerical tests of some of the methods for averaging
(see [2]), we choose 3D Poisson and linear elasticity problems on a unit cube
domain for testing (solutions of the problems are illustrated in Figure 3). The Poisson
equation has unit right-hand side and homogeneous Dirichlet boundary conditions
on the surface of the cube. For linear elasticity problem, the cube is mounted at
a vertical face and loaded by its own weight.

Problems are discretized by the finite element method using trilinear cubic ele-
ments, all of them of the same size h. The domain was divided into 4×4×4 cubic
subdomains of size H, and we test different numbers of elements per subdomain
edge, H/h = 4, 8, 16, 32, and 60. The interface is either regular, i.e. consisting of
plane sections only, or jagged (see Figure 1). Both homogeneous and nonhomoge-
neous materials are considered. For the Poisson problem, the low material constant
is chosen as 1 and the high one as 106, for elasticity the low value of Young modulus
is 105 and the high one is 2.1·1011. Three nonhomogeneous material arrangements
are designed (see Figure 2):

• Material 1 – Random elements : For each element, the value of the material
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coefficient is chosen randomly with a uniform distribution between the low and
high values.

• Material 2 – Slices along the interface: Only the low and high values of the
material coefficient are used as depicted in Figure 2. The solution to the Poisson
problem defined on this domain is in Figure 3.

• Material 3 – Stiff rods of material with the high coefficient arranged in a 4×4 lat-
tice inside the material with the low coefficient.

These arrangements have been chosen to model several situations encountered in
engineering, such as rapidly oscillating coefficients, layered structures, or reinforced
composite structures.

Coarse nodes at all crosspoints and coarse averages are used. Quality of the
preconditioner is measured by the number of iterations of PCG needed to reduce the
relative residual below 10−6.

For computations, the BDDCML library – a massively parallel implementation
of the Adaptive-Multilevel BDDC method – is used. The Schur complements are not
computed explicitly in this implementation, so the averaging by values on diagonals
of the complements is only approximated by diagonals of the subdomain matrices.

For homogeneous material and regular interface, the same results have been
obtained by all methods of averaging, only the ul method has performed little worse.
For Poisson problems the number of iterations are depicted on Figure 4 (left), for
linear elasticity the results are very similar and they are not reported.

For jagged interface, the results are summarised in Table 1, and for Poisson
problems, they are also plotted in Figure 4 (right). The behaviour of the methods is
again very similar for both Poisson and linear elasticity problems, the main difference
is worse convergence for elasticity. The interesting observation is that the rate of
worsening of the convergence with growing ratio of H/h is different for different
methods: for instance, the auj method is much more stable than dk method, and
although auj is the worst method for 4 elements per subdomain edge, it belongs to
the best for the 32 and 60 elements per edge.

Poisson problem linear elasticity
H/h 4 8 16 32 60 4 8 16 32
aa 11 14 15 16 18 28 35 37 39
dk 6 8 11 17 24 13 18 28 44
rho 11 14 15 16 18 28 35 37 39
auj 12 14 15 16 18 32 40 41 42
uj 7 9 14 22 32 19 30 41 68
ul 10 13 17 22 27 21 37 51 61

Table 1: Number of iterations: homogeneous material, jagged interface
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The results for nonhomogeneous materials are illustrated by graphs only. For
Material 1 (random elements), the behavior is again very similar for both Poisson
and linear elasticity problems, so only results for the Poisson problem are depicted
in Figure 5 for regular (left) and jagged (right) interface. Note the different scale
of the vertical axes. We can see that the jagged interface worsens dramatically the
behaviour of both aa and auj methods, which do not adapt locally to the jumps
along the interface and use a single weight for the whole part of the interface.

In the case of Material 2 (slices), for regular interface, all methods perform equally
well with the exception of aa. For the Poisson problem, see Figure 6 (left). For jagged
interface (Figure 8), methods aa and uj did not converge in 1000 and for others, there
is a difference between Poisson problems (left) and linear elasticity (right): for the
former, the dk method worsens quite rapidly with growing H/h, for the latter dk it
is the best even for H/h = 32.

Material 3 (stiff rods) leads to quite challenging problems: the results are diverse
and difficult to predict. Methods behave differently for Poisson problems and linear
elasticity even for regular interface (see Figure 9). For jagged interface, convergence
was achieved only for Poisson problems (Figure 7 right).

Figure 1: Regular (left) and jagged (centre) interface, and a detail of an interior
jagged subdomain (right)

Figure 2: Material 1 – random elements (left), Material 2 – slices (centre), and
Material 3 – stiff rods (right)
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Figure 3: Solution to the Poisson problem with homogeneous material (left), for the
Poisson problem with Material 2 – slices (centre), and magnified displacement of the
linear elasticity problem with homogeneous material (right)
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Figure 4: Homogeneous material, Poisson problem, regular (left) and jagged (right)
interface
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Figure 5: Material 1 (random elements), Poisson problem, regular (left) and jagged
(right) interface. Note the different scale on the vertical axes
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Figure 6: Material 2 (slices), Poisson problem, regular (left) and jagged (right)
interface
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Figure 7: Material 3 (stiff rods), Poisson problem, regular (left) and jagged (right)
interface. Note the different scale on the vertical axes.

6. Conclusions

Three new forms of the averaging operator (auj, uj, ul) have been numerically
compared with three standard ones (aa, dk, rho) on several challenging test problems.
We have found that the choice of the method of averaging has a significant influence
not only on the convergence of the BDDC method, but also on the rate of worsening
of the convergence with growing ratio of H/h. The main conclusion one can draw
from our numerical results is that there is no single universal method for averaging
that would perform well for all cases; the performance of the methods depends on
the problem, on the H/h ratio as well as on the profile of the interface (regular or
jagged). Moreover, it is usually not clear in advance, which method would be the
best one for the given problem. It seems that a robust and efficient implementation
of the BDDC method should offer a flexible choice from several different averaging
methods, and it is worth trying several of them before a production computations
are performed.
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Figure 8: Material 2 (slices), jagged interface, Poisson (left) and linear elasticity
(right) problems. Note the different scale on the vertical axes.
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Figure 9: Material 3 (stiff rods), regular interface, Poisson (left) and linear elasticity
(right) problems. Note the different scale on the vertical axes.

Nevertheless, some recommendations based on our results can still be made: For
homogeneous problems, the simplest method aa is sufficient for both regular and
irregular interface. It seems also less sensitive to growing H/h ratio than other
methods. However aa should not be applied to nonhomogeneous materials for which
the convergence can be disastrous. For nonhomogeneous problems, dk or, if the solver
has access to material data, the rho scaling perform well. Moreover, rho seems
more reliable, as convergence for dk deteriorates more rapidly with growing H/h
ratio, especially for jagged interface. For several complicated cases combining jumps
and irregular interface, the newly developed methods, auj, uj, and ul noticeably
superseded the standard approaches, especially for linear elasticity problems.

In Lemma 1, some relationships between preconditioned residual and its preimage
in both the spaces Ŵ and W̃ for the BDDC preconditioner have been presented.
However, they have not led us to any new practical method for averaging so far.
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Abstract

Scalar parameter values as well as initial condition values are to be identified

in initial value problems for ordinary differential equations (ODE). To achieve this

goal, computer algebra tools are combined with numerical tools in the MATLAB R©

environment. The best fit is obtained through the minimization of the summed squares

of the difference between measured data and ODE solution. The minimization is based

on a gradient algorithm where the gradient of the summed squares is calculated either

numerically or via auxiliary initial value problems. In the latter case, the MATLAB R©

Symbolic Math Toolbox
TM

is used to derive the expressions that define the auxiliary

problems and to transform them into MATLAB R© routines.

1. Introduction

This work was initiated by [3], where parameter identification is performed by
an artificial neural network algorithm. A question arose, whether a more traditional
method could be effective in solving the identification problem. By a more traditional
method, we mean the minimization of a relevant cost function by a gradient-based
minimization algorithm.

Parameter identification is a common task in chemistry, biology, and engineering.
If the underlying problem is not ill-posed, parameters can be identified by a straight-
forward method, see, for instance, [5], a short report providing the reader with an
easy introduction to the subject, or a more advanced applications [1, 6]. Let us
emphasize that we do not consider data polluted by noise, though it is a common
difficulty in practice, see [4].
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2. Identification problems

Cement hydration. The cement hydration process is modeled by the following initial
value problem (IVP) presented in [3]

dα

dt
(t) = B1

(

B2

α∞

+ α(t)

)

(α∞ − α(t)) exp

(

η

α∞

α(t)

)

C, (1)

α(0) = 0, (2)

where α is the time dependent degree of hydration and α∞ stands for its limit
value, B1 and B2 are coefficients dependent on the cement chemical composition,
η represents the microdiffusion of free water, and C ≈ 2× 10−7 is a known constant,
see [3].

It is assumed that

(α∞, B1, B2, η) ∈ Iα = [0.7, 1.0]× [106, 107]× [10−6, 10−3]× [−12,−2]. (3)

Generalized Van der Pol oscillator. Let us consider the following nonlinear IVP

d2y

dt2
= (c1 − c2y

2)
dy

dt
− c3y, (4)

y(0) = c4,
dy

dt
(0) = c5, (5)

where c1, c2, and c3 are positive parameters, and c4, c5 are real parameters. If
c1 = c2 = c3 = 1, then we get the Van der Pol oscillator. It is assumed

(c1, c2, c3, c4, c5) ∈ IC = [0.5, 3]3 × [1, 3]× [−1, 1]. (6)

In both IVPs, the values of parameters are to be identified through mi, that is,
the measurements of either the hydration at time points ti ∈ [0, Tα], i = 1, 2, . . . , nα,
or the measurements of the position y(ti) at ti ∈ [0, TC], i = 1, 2, . . . , nC .

The identification problem: Find p̂ ∈ I such that

p̂ = argmin
p∈I

Ψ(p), (7)

where

Ψ(p) =
n

∑

i=1

wi(mi − u(ti))
2 (8)

and either I ≡ Iα, n ≡ nα, and u ≡ α solves (1)–(2), or I ≡ IC , n ≡ nC , and u ≡ y
solves (4)–(5). The positive weighting factors wi are also problem dependent and
enable to increase or decrease the importance of some measurements.
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3. Sensitivity analysis

To employ a gradient method for the minimization of Ψ, the gradient of Ψ with
respect to the components of p ∈ I is necessary. The partial derivatives of Ψ can be
approximated by the numerical differentiation of Ψ, or by solving auxiliary problems.
In the latter case, since

∂Ψ

∂pj
= 2

n
∑

i=1

wi (mi − u(ti))u
′

pj
(ti), (9)

where pj is a component of p and u′
pj

stands for the derivative of the state solution
with respect to pj, we have to find functions u′

pj
as the solutions of auxiliary IVPs.

According to [2], the derivatives of the state solution α with respect to α∞, B1, B2,
and η exist and they are solutions of

dv

dt
(t) = g(t)v(t) + q(t), (10)

v(0) = 0, (11)

where the function g originates from the right-hand side of the state equation (1)
differentiated w.r.t. the symbol α, whereas the derivative w.r.t. a parameter from
the set {α∞, B1, B2, η} results in the function q.

To arrive at an IVP analogous to (10)–(11), we rewrite (4)–(5) into a system of
first order equations

dy1
dt

= y2, (12)

dy2
dt

= (c1 − c2y
2
1)y2 − c3y1, (13)

y1(0) = c4, y2(0) = c5. (14)

By differentiating (12)–(14) w.r.t. y1, y2 and the parameters, we obtain the following
parallel to (10)–(11)

(

dv1/dt
dv2/dt

)

=

(

0 1
−2c2y1y2 − c3 c1 − c2y

2
1

)(

v1
v2

)

+

(

0
ω

)

, (15)

v1(0) = θ1, v2(0) = θ2, (16)

where θ1 = 0 = θ2 and ω = y2 if the derivative of the state solution y ≡ y1 w.r.t. c1 is
to be calculated, ω = −y21y2 and ω = −y1 if we differentiate w.r.t. c2 and c3, re-
spectively. If the derivative of y with respect to the initial conditions is sought, then
ω = 0 in (15) and θ1 = 1, θ2 = 0 in (16) if we differentiate w.r.t. c4, or θ1 = 0, θ2 = 1
if we are interested in the sensitivity to c5. Details in [2, Chapter 13 and 14].

To summarize, let us recall that for each parameter α∞, B1, B2, η (or c1, . . . , c5),
we infer and solve (10)–(11) (or (15)–(16)). After substituting v (or v1) for u

′
pj
in (9),

we obtain one component of the gradient of Ψ.
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The derivation of the expressions appearing on the right-hand side of (10) is
easy for the generalized Van der Pol equation, see (15), but more laborious for the
hydration problem. Nevertheless, it is effortlessly performed by the MATLABR©

Symbolic Math Toolbox
TM

(we used its R2012b version), namely by its functions
diff and matlabFunction. The latter converts symbolic expressions to MATLABR©

functions.

4. Minimization

To minimize (8), the MATLABR© R2012b Optimization Toolbox
TM

fmincon func-
tion was used. It is designed for constrained minimization, see (3) and (6). The cost
function gradient can be calculated by a black-box numerical differentiation, or by
a code delivered by the user. We tried both approaches, and applied the sensitivity
analysis approach explained in Section 3 in the latter.

Since parameter identification is a global minimization problem and fmincon is
a tool for local minimization, optimization runs starting from different initial points
belonging to Iα or Ic, see (3) and (6), were necessary to increase the chance of finding
a global minimum.

5. Results, observations, and conclusions

In both problems, the weights wi were chosen as equal.
Cement hydration. Figure 1 shows the graphs of the derivatives of the state

solution α determined by (0.7, 5 × 106, 5 × 10−4,−2.5) ∈ Iα with respect to the pa-
rameters. We observe a high sensitivity to B2 and a low sensitivity to B1. Moreover,
the peak sensitivity occurs in a neighborhood of t = 25 and is, except for the case
of α∞, strongly localized. We deduce that the most important measurements are
those made in between, say, t = 5 and t = 50 or t = 100. The state solution rapidly
increases in [0, 50], see Figure 2 (left), where the best fit to a set of 23719 real-world
measurements of the cement hydration process (1)–(2) is depicted (time, t, in hours).

Generalized Van der Pol oscillator. Examples of the derivatives of y ≡ y1, see
(4) and (12), at c1 = c2 = c3 = 1, c4 = 2, and c5 = 0 are depicted in Figure 3.
The state solution y as well as some of its derivatives are periodic for a range of
parameters, but the amplitude of the other derivatives is increasing, which might
decrease the accuracy of the approximate expansion of y (w.r.t. the parameters) at
times far from the initial time. Figure 2 (right) shows the initial solution y for the
above values c1, . . . , c5, also seven points obtained via “measurements” derived from
the state solution determined by parameters that are to be re-identified, and the
state solution determined by the identified parameters.

Let us present a few observations and conclusions. The coupling of symbolic and
numerical computation substantially reduces the amount of problem-dependent user-
written code. Although the derivatives of the state solution w.r.t. the parameters
reveal the sensitivity of the state solution to the perturbation of the parameters and
are beneficial in the evaluation of (9) and, if possible, in the placement of the times of
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Figure 1: The derivative of α w.r.t. α∞ (top left), B1 (top right), B2 (bottom left),
η (bottom right).
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Figure 2: Identified solution to (1)–(2) (left), and to (4)–(5) (right).

measurements, their calculation slows the minimization process. Indeed, numerical
differentiation turned out to be quite fast and accurate and might be considered the
method of first choice in fmincon if the parameter identification is the only goal of
calculation. In any case, however, the adjoint equation technique is worth considering
to speed up the minimization process.
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Abstract

The computation of the greatest common divisor (GCD) has many applications in

several disciplines including computer graphics, image deblurring problem or comput-

ing multiple roots of inexact polynomials. In this paper, Sylvester and Bézout matrices

are considered for this purpose. The computation is divided into three stages. A rank

revealing method is shortly mentioned in the first one and then the algorithms for cal-

culation of an approximation of GCD are formulated. In the final stage the coefficients

are improved using Gauss-Newton method. Numerical results show the efficiency of

proposed last two stages.

1. Introduction

Sylvester matrices (see [1, 3, 5, 6, 10, 11, 14, 15, 16, 17]) or Bézout matrices
(see [3, 7, 8, 12]) can be used for the calculation of GCD. We start with Sylvester
matrix. The coefficients of GCD of two polynomials f1 and f2 can be obtained
from a Sylvester subresultant Sk(f1, f2) which is formed from the Sylvester matrix
S(f1, f2) by deleting the last k − 1 rows, the last k − 1 columns of the coefficients
of f1 and the last k − 1 columns of the coefficients of f2. If ni =deg(fi) for i = 1, 2,
n1 ≥ n2, and if for a positive integer d ≤ n2 the subresultant Sd(f1, f2) is the first
rank deficient matrix in the sequence

Sn2
(f1, f2), Sn2−1(f1, f2), . . . , S1(f1, f2), (1)

then d =deg(GCD(f1, f2)). There are two well-known procedures for calculation of
the rank (or rank deficiency) of a matrix. For small dimension the usage of SVD is
sufficient (see for example [2] or [9]). The numerical rank revealing algorithm with
many robust examples is in detail described in the papers [11, 17]. The whole process
is in details, together with the calculation of GCD and rank determination, explained
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in the papers [17], [11], [14] and therefore, in the following, we are considering the
calculation for m polynomials.

We now consider m real polynomials f1, f2,. . . fm. Let ni =deg(fi). Denote
g =GCD(f1, f2, . . . , fm). It is assumed that d=deg(g) > 0. The objective is to find
polynomials w1, w2, . . . , wm of degrees n1 − d, n2 − d,. . . , nm − d respectively, such
that fi = wi g for all considered i, which can be expressed in the form (see [4, 16, 17])

Cd(wi)~g = ~fi, for i ∈ {1, 2, . . . , m}, (2)

where Cd(wi) is the Cauchy matrix for the polynomial wi with d + 1 columns, i.e.,
Cd(wi) ∈ R

(ni+1)×(d+1). The symbol ~g denotes the vector of coefficients of g and the

symbols ~fi and ~wi have an analogous meaning. The system (2) can be rewritten in
the form

F (x) = b, where x =





















~g
~w1

~w2

·
·
·
~wm





















, b =























1
~f1
~f2
·
·
·
~fm























, F (x) =





















(~r)T~g
Cd(w1)~g
Cd(w2)~g

·
·
·

Cd(wm)~g





















(3)

and ~r is a scaling vector (see [16]). Let us remark that ~r,~g ∈ R
d+1, and ~wj ∈ R

nj−d+1.

The system (3) represents
( m
∑

j=1

nj

)

+m+1 equations with
( m
∑

j=1

nj

)

+m+1−(m−1) d

unknowns and the least square solution (see [9]) is applied. According to the well
known theory (see [2]) we have

grad

[

1

2
‖F (x)− b ‖2

]

= (J(x))T [F (x)− b] , (4)

where J(x) is the Jacobian of F and can be easily calculated as a Gateaux derivative
of F . The problem of location of minimum leads to the solution of the system

(J(x))T [F (x)− b] = 0. (5)

Let us mention the result formulated in [16]: for every scaling vector ~r satisfying
~rT~g 6= 0, if GCD(w1, w2, . . . , wm) = 1, then the Jacobi matrix has a full column
rank and therefore F (x) = b. However all these investigations depend on the basic
question how to find the rank d. This is well known for m = 2 and it is shortly
analysed in Section 2. In the next section the algorithm using Sylvester matrices
for m ≥ 3 is discussed. In Section 3, the calculation of the greatest common divisor
of several univariate polynomials through Bézout-like matrices is considered. Both
strategies are numerically tested in the last section.
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2. Calculation of GCD through Sylvester matrices

At the beginning consider the polynomials f1 and f2 of degrees n1 and n2 re-
spectively, where n1 ≥ n2. According to the previous section we determine an
integer d such that Sd(f1, f2) is the first rank deficient matrix in (1) and denote the
right singular vector of the matrix Sd(f1, f2) = [Cn2−d(f1), Cn1−d(f2)] corresponding
to the smallest singular value σmin (Sd(f1, f2)), which is theoretically equal to zero,
by [(~w2)

T ,−(~w1)
T ]T . We have denoted g =GCD(f1, f2). The coefficients of ~g are

calculated as the least square solution of the equation

Cd(w2)~g = ~f2 or Cd(w1)~g = ~f1. (6)

One of these equations (usually the first one) is solved and the second one is used
for improvement of the result if it is necessary.

However, for three or more polynomials it is impossible to apply an analogous
technique for finding the degree of GCD(f1, f2, f3). A consecutive process is usually
applied, which can be formally written for three polynomials in the form

d = deg(GCD(f3,GCD(f1, f2))).

Numerically, the determination of GCD is usually based on some minimisation
method which is formally written by (4), (5) and the realization means an infinite
iterative process where only finite number of iterations is implemented. Moreover, if
the calculation is performed in floating point environment the result is inexact and
therefore an approximation is obtained as a result of the above mentioned minimiza-
tion process. This approximation to GCD will be in this paper entitled approximate

greatest common divisor - AGCD. This concept is studied and discussed in many pa-
pers (see for example [6, 13, 16]). The concept AGCD is mentioned in context with
STLN algorithm (see [10, 15, 13, 6]). In this paper AGCD is the result of the least
square procedures which is realized by the Gauss-Newton method. Exact coefficients
are assumed. Let us consider the system (5). By analogy to [16] and [17] we now
present the algorithm for several polynomials. The numerical process will be evident
from the following algorithm.

Algorithm 2.1 (AGCD for m polynomials.)
Input: Real polynomials f1, f2,. . . , fm of degrees n1, n2,. . . , nm respectively, vec-
tor b defined by (3) and a given tolerance θ. It is assumed that

n1 ≥ n2 ≥ · · · ≥ nm.

Output: Polynomial g =AGCD(f1, f2, . . . , fm)
begin

g := fnm

for j = m,m− 1, . . . , 2 do

Calculate g =AGCD(g, fnj−1
).
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end

for j = 1, m do

wj(x) := fj(x)/g(x)
end

Put d :=deg(g);
form the vector (x)T = [(~g)T , ( ~w1)

T , ( ~w1)
T , . . . , ( ~wm)

T ]T for the initial
approximation of Gauss-Newton iteration.
repeat

x+ = x−













~r 0 0 0
Cd(w1) Cn1−d(g) ·

· 0 · · ·
· · · · 0

Cd(wm) 0 · · Cnm−d(g)













† 











~r T~g

Cd(w1)~g − (~f1)
·
·

Cd(wm)~g − ( ~fm)













x = x+

until ‖F (x)− b‖ < θ
Once ‖F (x)− b‖ < θ, we extract coefficients of the polynomial g(x)
from the vector x.

We now have g(x) =GCD (f1, f2, . . . , fm).

end of algorithm

The matrix is a block matrix, the non-zero blocks are Cauchy matrices. It con-
tains only zero-blocks except for the first column and the diagonal blocks.

3. Calculation of GCD using Bézout matrices

We now present a different approach to computing the GCD of several real uni-
variate polynomials using Bézoutian matrices (see [3], [8]). The size of this kind of
matrix depends purely on the degree of one of the polynomials. It will be possible
to determine the degree of GCD of a whole set of polynomials at once. Moreover,
its coefficients will be computed at the same time. Let p and q be two polynomials,

p(x) = a0x
k + a1x

k−1 + . . . ak−1x+ ak,

q(x) = b0x
k + b1x

k−1 + . . . bk−1x+ bk

of degrees at most k > 0. If deg(p) >deg(q) then some of the first coefficients of q
equal zero.
The Bézout matrix associated to p and q (see [12]) is

B(p, q) =







c1,1 · · · c1,k
...

...
ck,1 · · · ck,k






,
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where the coefficients ci,j are defined by the relation

p(x)q(y)− p(y)q(x)

x− y
=

k
∑

i,j=1

ci,jx
i−1yj−1.

In the following, the procedure for computing the AGCD of m polynomials is
presented. To achieve this, a set of polynomials f1, . . . , fm satisfying

k := n1 = deg(f1) > deg(fi), i = 2, 3, . . . , m

will be assumed. In contrast with Sylvester matrices, all the Bézout matrices B(f1, fi),
i = 2, 3, . . . , m are square and of the same dimension. Therefore the matrix

Bf1(f2, . . . , fm) =











B(f1, f2)
B(f1, f3)

...
B(f1, fm)











can be constructed. Analogously to computation with Sylvester matrices, the degree
of the AGCD equals k − rank (Bf1(f2, . . . , fm)). Its coefficients can be computed by
determining the linear combinations of column vectors, as described in the algorithm
below (for details see [8]). The numerical realization of GCD will be again called
AGCD.

Algorithm 3.1 (AGCD for m polynomials.)
Input: Real polynomials f1, f2,. . . , fm of degrees n1, n2,. . . , nm respectively. It is
assumed that k := n1 > max{n2, . . . , nm}.

Output: Polynomial g =AGCD(f1, f2, . . . , fm).
begin

Determine the d = k − rank(Bf1(f2, . . . , fm)).
Let t1, . . . , tk be column vectors of Bf1(f2, . . . , fm) = [t1, . . . , tk].
Construct T2 = [tk, tk−1, . . . , td+1] and T1 = [td, td−1, . . . , t1].
Calculate QR decomposition of T2, i.e. T2 = QR, where Q ∈ R

k×k is orthogonal
and R ∈ R

k×(k−d) is an upper triangular matrix.
We set c := (R)−1

k−d,k−d and compute wd+1
i = c

(

QTT1

)

k−d,i
, for i = d, . . . , 1.

Setting hi := wd+1
d−i+1, i = 1, . . . , d and h0 := 1,

we finally have g(x) = h0x
d + h1x

d−1 + . . .+ hd−1x+ hd = GCD(f1, . . . , fm).
end of algorithm
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4. Numerical experiment

To compare the two presented algorithms, let us now have the following polyno-
mials:

f0 = (x− 0.9)5(x− 0.8)5(x− 0.7)5(x+ 0.3)5(x+ 0.5)5(x+ 0.7)5,

f1 = (x− 2)5(x− 0.9)5(x− 0.8)5(x+ 0.5)5(x+ 2)5,

f2 = (x− 3)5(x− 0.8)5(x+ 0.5)5(x+ 2)5 and

f3 = (x− 0.8)4(x+ 0.5)4.

It is easily seen, that GCD(f0, . . . , f3) = f3. Accuracy of these computations is shown
in Table 1. The errors made in determining the coefficients are about two orders of
magnitude smaller in case of Algorithm 2.1 than in the case of Algorithm 3.1.

Coefficients Error in coefficients

GCD Algorithm 2.1 Algorithm 3.1
1.0000
-1.2000
-1.0600
1.3320
0.5361
-0.5328
-0.1696
0.0768
0.0256

0.0000e+00
-9.1038e-15
-6.8834e-15
2.6645e-15
1.2212e-15
-2.6645e-15
-2.0539e-15
-7.2164e-16
-3.8164e-16

0.0000e+00
1.8050e-12
-7.6916e-13
-2.6426e-12
3.3151e-13
1.3358e-12
1.1419e-13
-2.3732e-13
-5.7697e-14

Table 1: Comparison of computational error in AGCD coefficients produced by Al-
gorithm 2.1 and Algorithm 3.1.
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Abstract

A simple beam subjected to a row of regularly distributed moving forces and
simultaneous vertical motions of its supports is described using a simplified theoretical
model and a finite differences approach. Several levels of simplification of the structure
and input data are supposed. Numerical results confirm legitimacy of the assumptions.

1. Introduction

Although dynamic action of moving loads on structures was studied since middle
of the nineteenth century, the combined effect of train and earthquake attracted
attention only recently, [5]. In the present work, we concentrate to the problem of
vertical vibrations of a beam, which is subjected to a row of regularly spaced fast
moving forces and simultaneously to motion of its supports due to an earthquake.

An approximative analytical solution to the problem was formulated at the cost
of significant simplification many times, e.g., [2]. However, these formulae bring
their own difficulties for numerical enumeration: they involve partial sums of infinite
trigonometric series, which can introduce spurious oscillations, or hidden pairs of
terms, which cancel themselves under certain conditions and thus they are a poten-
tial source of numerical instability. Moreover, simplifying assumptions like lack of
damping or a limited number of eigenmodes taken into account lower credibility of
the formulae. Such obstacles divert attention to numerical alternatives.

Numerical algorithms for solution to fourth order parabolic PDEs have a long
tradition. The available methods comprise explicit and implicit finite difference
schemas or several variants of finite element methods. Method of lines gained in
popularity for general problems. It reformulates the PDE to the form, which is
convenient for application of a standard ODE solver.

In this paper, we present an attempt to employ an implicit difference schema for
solution to the PDE describing the transverse vibrations of a beam. The numerical
procedure is tested on the benchmark case introduced by Evans in [1] and on a simple
model of a real bridge, see [3].
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Figure 1: Simplified model of the beam, moving forces, and movement of supports

2. Description of the model and closed form solution

Let us assume a simple damped beam of span `, which is subjected to a row
of n moving forces Fi, i = 1, 2, . . . , n at the distances di, see Figure 1. The forces
are moving from the left to the right with a constant velocity c. The supports of
the beam perform vertical movements α(t) (left support) and β(t) (right support),
respectively. The problem is governed by the partial differential equation:

EI vıv(x, t) + µ v̈(x, t) + 2µγ v̇(x, t) =
∑n

i=1
Fiεi(t)δ(x− di), (1)

v(0, t) = α(t), v(`, t) = β(t), v′′(0, t) = 0, v′′(`, t) = 0, (2)

v(x, 0) = v̇(x, 0) = 0, (3)

where v(x, t) is the vertical displacement of the beam at x and time t, respectively,
EI is the flexural rigidity of the beam (constant), µ is the mass per unit length
of the beam (constant), γ is the circular frequency of the beam damping, εi(t) =
h(t− ti)−h(t−Ti) with h(t) being the Heaviside unit step function, δ(x) is the Dirac
function, ti = di/c, Ti = (` + di)/c is the time when the i-th force enters or leaves
the beam, di is the distance between the first and i-th force d1 = 0, and primes and
dots denote the differentiation with respect to space and time, respectively.

The boundary conditions (2) characterize the “simply supported beam” with
prescribed movement of its both ends. The soil displacement functions are usually
assumed to be equal α(t) = β(t) or shifted α(t) = β(t±∆t) on both ends, however
the general choice α(t) 6= β(t) is supposed here.

The closed form solution to the problem of beam vibration (1–3) used in this
work is described in detail in [3]. Thus, due to space limitation only a few incomplete
formulae will be presented here.

The response of the beam v(x, t) is resolved into the so called quasi-static com-
ponent vs(x, t) comprising variable boundary conditions and dynamic component
vd(x, t), which includes the moving load on the right hand side:

v(x, t) = vs(x, t) + vd(x, t). (4)
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The time-variable boundary conditions α(t), β(t) in equation for vs(x, t) are as-
sumed to be represented by a sum of m selected (dominant) terms of a finite Fourier
approximation, possibly modulated by a function of “slow time” τ , τ=σt, σ � 1,

α(t) =
∑m

k=1
γ(τ) sinωkt. (5)

Harmonic character of the boundary conditions and assumption of zero damping
enables to find analytical solution as a sum of eigenmodes vs,i(x, t) :

vs(x, t) =
∑m

k=1
vs,k(x, τ) sinωkt, (6)

vs,k(x, τ) = Ck,1 sin
λkx

`
+ Ck,2 cos

λkx

`
+ Ck,3 sinh

λkx

`
+ Ck,4 cosh

λkx

`
, (7)

where λk = ` (µω2
k/EI)

1
4 and Ck,j(τ) are given by boundary conditions.

The dynamic component can expressed in the form of eigenmodes expansion:

vd(x, t) =
∑∞

j=1
qj(t) sin

jπx

`
, (8)

where the functions qj(t) sum contributions of individual forcing components.

3. Finite difference schema

Let us assume a uniform discretization of the beam with N − 1 interior points,
0 = x0 < x1 < . . . < xN = `, xi = ih. The difference schema for the 4th order
derivative in (1) with boundary conditions (2) will be deduced from a transformed
system (z(x, t) = v′′(x, t) ):

z′′(x, t) + v(x, t) = f(x, t) and v(0, t) = α(t), v(`, t) = β(t), (9)

v′′(x, t)− z(x, t) = 0, z(0, t) = 0, z(`, t) = 0,

which can be discretized using the standard second order difference schema h2v′′(xi) ≈
v(xi−1)−2v(xi)+v(xi+1). This procedure avoids explicit formulation of second order
boundary conditions. Eliminating the auxiliary variable z the linear algebraic system
conforming to (9) with boundary conditions (2) can be written in the matrix form:

1

h4
M · vj = fj +

1

h4
gj. (10)

Vector vj represents unknown displacements of internal nodes xi, i = 1, . . . , N − 1
at time instant tj = j · ∆. Vector fj = {f(xi, tj)}N−1

i=1 corresponds to the value of
the right hand side in the internal nodes. The symmetric matrix M ∈ R(N−1)×(N−1)

consists of 5 non-zero diagonals with numbers 6,−4, 1 on the main-, 1st, and 2nd sub-
and superdiagonal, respectively, with the exception of the corner values: M1,1 =
MN−1,N−1 = 5. Elements of vector gj ∈ R(N−1) are given as

gj = (2α(t),−α(t), 0, . . . , 0,−β(t), 2β(t))T . (11)
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The time derivatives at t = tj = j ·∆ will be approximated by formulae

∆2v̈(tj) ≈ v(tj−2)− 2v(tj−1) + v(tj) , 2∆v̇(tj) ≈ v(tj−2)− 4v(tj−1) + 3v(tj). (12)

The final implicit recurrence formula can be written in the matrix form for j = 1, . . .(
b2M +

(
1 +

3

2
γ∆

)
I

)
·vj =

∆2

µ
fj +b2gi+2(1+γ∆)vj−1−

(
1− 1

2
γ∆

)
vj−2, (13)

where

b =

√
EI

µ

∆

h2
. (14)

In compliance with the initial conditions (3) the two starting values can be considered
zero: v−1 = v0 = 0.

The discretization parameters h, ∆ should be chosen to allow consistent descrip-
tion of the moving load. The value of h should correspond to axle distances of the
supposed train and the time step ∆ has to be dependent on the train velocity

h =
1

k
GCD{d1, . . . , dn} , ∆t =

1

l

h

c
for some k, l ∈ N. (15)

The consistent distribution of the axle load Fi between two adjacent space nodes is
necessary if l > 1. This can be assured, e.g., by the choice

f(x, t) =
∑n

i=1
Fi max

{
0, 1−

∣∣∣∣x− (ct− di)
h

∣∣∣∣} . (16)

4. Numerical verification

Problem 1. The simple benchmark case was used first in [1] and then subse-
quently several times. It considers free vibration case (f(x, t) = 0) of an undamped
system (1–2) with parameters ` = 1, EI = 1, µ = 1, γ = 0, α(t) = β(t) = 0 and

v(x, 0) =
1

12
x(2x2 − x3 − 1) ; v̇(x, 0) = 0 for 0 ≤ x ≤ 1. (17)

The exact solution to the continuous problem is obtained by Fourier series analysis:

v(x, t) =
∑∞

s=1

4

s5π5
(cos(sπ)− 1) sin(sπx) cos(s2π2t). (18)

Figure 2(a-b) shows numerical approximation (solid curves) of v(0.5, t) computed
using the finite difference recurrence (13) together with the corresponding exact solu-
tions (dashed curves) for two different time steps, ∆ = 0.005, 0.00125. The relatively
high decrease of the computed amplitude in the plot b) is caused by numerical dis-
persion (damping), see [4]. The rate of numerical dispersion depends on the value
of coefficient b (14). The same coefficient occurs in the stability criterion of explicit
difference schemas but with different interpretation.
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Figure 2: Mid-span deflection (x = 1
2
`) of three benchmark cases – numerical ap-

proximation (solid, blue) and exact solution (dashed, red).
(a–b) Free vibration benchmark, h = 0.05, (a) ∆ = 0.00125, (b) ∆ = 0.005.
(c–d) Concrete bridge (` = 20m), train passing at speed c = 100 km/h, h = 0.5,∆ =
0.0045, (d) detail for t ∈ (10, 15).
(e–f) Concrete bridge (` = 20m), train passing at speed c = 100 km/h and an earth-
quake shock at te = 6.76s, ∆ = 0.0045, (f) detail for t ∈ (5, 10).
(For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Problem 2. The second example is selected from the parametric study presented
by authors in [3]. Parameters of the concrete bridge are specified as ` = 20m,
µ = 8 · 103kg, EI = 65.5 · 106m3kg.s−2, γ = 1.27s−1. The train Talgo AV consists of
2 indentical formations with 7 carriages and 20 axles, 16 tons each. Figure 2(c-d)
shows the mid-span deflection of the bridge caused by train cruising at speed of
c =100km/h. The three significant peaks are caused by the motorized carriages
(one on each end of the train and two in the middle). The highly oscillating curve
(red) depicts the approximative analytical solution, only first eigenmode is taken
into account. The dark smooth curve corresponds to numerical solution (13) with
a relatively large quotient b ≈ 32. It follows approximately the mean value of the
analytical solution. Difference of both solutions in greater detail can be seen in part
d) of the figure. The high numerical damping wiped out small oscillations as well as
the free vibration after the train left the bridge (t = 13.5s).

Problem 3. Figure 2(e-f) shows effect of the combined load of train and earth-
quake. The earthquake is represented by its several Fourier components and a simple
modulation function, see [3]. The shock reaches the bridge at the moment when the
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first formation of the train leaves the bridge. At this moment is the response due to
passing train maximal because the four middle axles forces of the Talgo train repre-
sent a pair of engines. It is apparent that after the earthquake shock the amplitude
increases. Coincidence between approximate analytical (red, dashed) and numerical
(blue, solid) is fairly good: the maximal relative error is ∼ 10% despite the significant
simplification of the analytic model and the large time step which leads to b ≈ 32.

5. Conclusions

We presented a simplified analysis of the vertical vibration of a bridge, which is
is caused by a concurrent action of a long sequence of axle forces or their groups
distributed in almost regular distances and a support motion due to an earthquake.
The implicit finite difference scheme was introduced to verify justifiability of the
simplifying assumptions of the approximative closed form solution. The computed
responses were compared to those obtained using analytical methods with good re-
sults: the agreement between analytical and numerical results for the benchmarks
was within desired 1% provided that the time step ∆ was sufficiently small. Some
problems with high numerical damping are reported.
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Abstract

We deal with numerical simulation of incompressible flow governed by the Navier-
Stokes equations. The problem is discretised using the finite element method, and the
arising system of nonlinear equations is solved by Picard iteration. We explore the ap-
plicability of the Balancing Domain Decomposition by Constraints (BDDC) method to
nonsymmetric problems arising from such linearisation. One step of BDDC is applied
as the preconditioner for the stabilized variant of the biconjugate gradient (BiCGstab)
method. We present results for a 3-D cavity problem computed on 32 cores of a par-
allel supercomputer.

1. Introduction

The Balancing Domain Decomposition by Constraints (BDDC) was developed
by Dohrmann in [1] as an efficient method to solve large systems of linear equations
arising from partial differential equations discretised by the finite element method.
In [1], the method was applied to elliptic problems, namely Poisson problem and
linear elasticity. BDDC was extended to the incompressible Stokes problem in [4]
considering finite elements with discontinuous approximation of pressure. In [6], the
BDDC method was applied to the Stokes problem discretised by Taylor-Hood finite
elements with continuous pressure approximation. The interface problem in this
monolithic approach contains both velocity and pressure unknowns. An alternative
approach was presented in [3]. A generalisation of the BDDC method for systems
with nonsymmetric matrix was proposed in [12] and applied to Euler equations of
inviscid compressible flows.

In our contribution, we combine the approach to building the interface problem
from [6] with the extension to nonsymmetric problems from [12]. The algorithm
is applied to nonsymmetric linear systems obtained by Picard’s linearisation of the
steady Navier-Stokes equations using Taylor-Hood finite elements. Numerical results
for flow inside a 3-D lid driven cavity are presented.
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2. Navier-Stokes equations and the finite element method

We consider stationary flow of incompressible fluid in three spatial dimensions,
governed by the Navier-Stokes equations without body forces (see e.g. [2])

(u · ∇)u− ν∆u+∇p = 0 in Ω, (1)

∇ · u = 0 in Ω, (2)

where u = (u1, u2, u3)T is an unknown velocity vector, p is an unknown pressure
normalised by (constant) density, ν is a given kinematic viscosity, and Ω is the
solution domain. In addition, the following boundary conditions are considered

u = g on ΓD, (3)

−ν(∇u)n + pn = 0 on ΓN , (4)

where ΓD and ΓN are parts of the boundary ∂Ω, ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, n is
the outer unit normal vector of the boundary, and g is a given function.

2.1. Weak formulation

In deriving the weak mixed formulation, we multiply equations (1)–(2) by test
functions and integrate over the solution domain. Then using the divergence theorem,
we get the final weak formulation

We seek u ∈ Vg and p ∈ L2(Ω), satisfying∫
Ω

(u · ∇)u · vdΩ + ν

∫
Ω

∇u : ∇vdΩ−
∫

Ω

p∇ · vdΩ = 0 ∀v ∈ V, (5)∫
Ω

q∇ · udΩ = 0 ∀q ∈ L2(Ω). (6)

Here the spaces are

Vg :=
{
u ∈ H1(Ω)3,u = g on ΓD

}
,

V :=
{
v ∈ H1(Ω)3,v = 0 on ΓD

}
.

2.2. Assembly of the system of algebraic equations

During the assembly of the system of algebraic equations, we substitute into the
weak formulation (5)–(6) for u, p, v, and q their finite element counterparts

uh =
3nu∑
i=1

uiφi, ph =

np∑
i=1

piψi, vh =
3nu∑
i=1

viφi, qh =

np∑
i=1

qiψi.

Here φi are vector basis functions for velocity, ψi are scalar basis functions for pres-
sure, nu is the number of nodes with velocity unknowns, and np is the number of
nodes with pressure unknowns. For the considered hexahedral Taylor-Hood finite
elements (see e.g. [2]), nu is approximately eight times larger than np.
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We obtain the following system of algebraic equations[
νA + N(u) BT

B 0

] [
u
p

]
=

[
f
g

]
, (7)

where u is the vector of unknown coefficients of velocity, p is the vector of unknown
coefficients of pressure, A is the matrix of diffusion, N(u) is the matrix of advection
which depends on the solution, B is the matrix from continuity equation, and f and g
are discrete right-hand side vectors arising from Dirichlet boundary conditions. Each
part of system (7) is assembled as (see [2])

A = [aij], aij =

∫
Ω

∇φi : ∇φj dΩ, (8)

N(u) = [nij], nij =

∫
Ω

(u · ∇)φj · φi dΩ, (9)

B = [blj], blj = −
∫

Ω

ψl∇ · φj dΩ, (10)

f = [fi], fi = −
3(nu+∂nu)∑
j=3nu+1

uj

∫
Ω

(u · ∇)φj · φi dΩ− ν
3(nu+∂nu)∑
j=3nu+1

uj

∫
Ω
∇φj : ∇φi dΩ, (11)

g = [gl], gl =

3(nu+∂nu)∑
j=3nu+1

uj

∫
Ω
ψl∇ · φj dΩ. (12)

System (7) is nonlinear due to the matrix N(u), and for its linearisation, we use
the Picard iteration. This leads to solving a sequence of linear systems of equations
in the form [

νA + N(uk) BT

B 0

] [
uk+1

pk+1

]
=

[
f
g

]
, (13)

where N(uk) means that we substitute a solution of velocity from the previous step
to the matrix N. This—already linear—nonsymmetric system is solved by means of
iterative substructuring.

3. Iterative substructuring

For our calculations, we use decomposition of domain Ω into N nonoverlapping
subdomains. In order to explain how the BDDC algorithm fits to problem (13), we
assume reordering of unknowns within u and p such that the components corre-
sponding to the nodes on the interface are at the end. This leads to the following
blocking of the system

νA11 + N11 νA12 + N12 BT
11 BT

21

νA21 + N21 νA22 + N22 BT
12 BT

22

B11 B12 0 0
B21 B22 0 0




u1

u2

p1

p2

 =


f1
f2
g1

g2

 , (14)
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where subscript 1 denotes the part with interior unknowns and subscript 2 denotes
the part with interface unknowns. The whole blocks are now permuted to get an
interface problem, similarly as it was done for the Stokes problem in [6],

S

[
u2

p2

]
= g. (15)

Here

S =

[
νA22 + N22 BT

22

B22 0

]
−
[
νA21 + N21 BT

12

B21 0

] [
νA11 + N11 BT

11

B11 0

]−1 [
νA12 + N12 BT

21

B12 0

]
is the Schur complement with respect to the interface, and

g =

[
f2
g2

]
−
[
νA21 + N21 BT

12

B21 0

] [
νA11 + N11 BT

11

B11 0

]−1 [
f1
g1

]
is the reduced right-hand side.

Problem (15) is solved by the BiCGstab method [10], and one step of BDDC
is used as a preconditioner. Thanks to domain decomposition, both the action of
the BDDC preconditioner and of the matrix S are parallelised in each iteration.
This is realised by the multilevel BDDC implementation in the BDDCML library1

(version 2.4) [8] employed in our computations.

4. BDDC for nonsymmetric systems

The BDDC preconditioner works with a residuum rk obtained from the k-th it-
eration of the BiCGstab algorithm

rk = g − S
[

u2
k

p2
k

]
. (16)

The preconditioner provides an approximate solution to problem (15), and it is re-
alised by one iteration of the BDDC method.

A key idea of BDDC is to choose suitable coarse degrees of freedom, and then seek
solution on the interface in a space of functions that are continuous in these coarse
degrees of freedom. Although more advanced choices were introduced for advection-
diffusion problem in [9], we restrict ourselves in this study to continuity at coarse
nodes, which are selected according to [7], and continuity of arithmetic averages over
all faces and edges enforced independently for each component of velocity and for
pressure.

1http://users.math.cas.cz/~sistek/software/bddcml.html
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In each action of the BDDC preconditioner, a coarse problem and independent
subdomain problems are solved. First we look at one subdomain problem. It takes
the total residuum rk and extracts a local part on the subdomain as

ri = WiRir
k, (17)

where Ri is an operator restricting a global interface vector to i-th subdomain, and
matrix Wi applies weights to satisfy the partition of unity. Then we solve on each
subdomain a saddle-point problem[

Si CT
i

Ci 0

] [
ui
λ

]
=

[
ri
0

]
, (18)

where λ are Lagrange multipliers, Si is the Schur complement with respect to the
interface of the i-th subdomain, and Ci is the matrix defining coarse degrees of
freedom, which has as many rows as is the number of coarse degrees of freedom
defined at the subdomain. After solving this problem on each subdomain, we get
the subdomain correction.

Let us now have a look at the coarse problem. Before solving it in each iteration,
one needs to build it in the set-up phase of the preconditioner. This is performed by
solving the saddle-point systems from (18) with several right-hand sides[

Si CT
i

Ci 0

] [
Ψi

Λi

]
=

[
0
I

]
. (19)

The solution Ψi is the matrix of coarse basis functions with every column correspond-
ing to one coarse unknown on the subdomain. These functions are equal to one in
one coarse degree of freedom, and they equal to zero in the remaining local coarse
unknowns. As introduced in [12], also a set of adjoint coarse basis functions Ψ∗

i is
needed for nonsymmetric problems. These are obtained by solving[

ST
i CT

i

Ci 0

] [
Ψ∗

i

ΛT
i

]
=

[
0
I

]
. (20)

By solving problem (19), we obtain the local coarse matrix as a side product,

SCi = Ψ∗T
i SiΨi = −Λi.

Local coarse matrices are then assembled into the global matrix of the coarse problem

SC =
N∑
i=1

RT
CiSCiRCi,

where RCi is the restriction of the global vector of coarse unknowns to those present
at i-th subdomain.
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In each action of BDDC, we first extract the residuum for the coarse problem as

rC =
N∑
i=1

RT
CiΨ

∗T
i ri,

solve the coarse problem
SCuC = rC , (21)

and distribute the coarse solution to individual subdomains

uCi = ΨiRCiuC .

The complete action of the preconditioner MBDDC : rk → uk is obtained by
combining the subdomain corrections with the localised coarse corrections,

uk =
N∑
i=1

RT
i Wi(ui + uCi).

5. Numerical results

As the benchmark problem, we consider the 3-D extension of the popular prob-
lem in cavity introduced in [11]. The computational domain is a unit cube. The
mesh is divided into 32 subdomains using the METIS library (see Figure 1). The
computations are performed by a parallel finite element package written in C++ and
described in [5], and the BDDCML library [8] is used for solving the arising system
of equations. Simulations were performed on an SGI Altix UV 100 supercomputer
at the Supercomputer center of the CTU in Prague using 32 cores and the same
number of subdomains. Our results are compared with [11]. Two directions of the
unit tangential velocity vector are considered on the top wall, utop1 = (1, 0, 0) and
utop2 = (1/

√
3,
√

2/
√

3, 0). Picard iteration is used for linearisation, with precision∥∥uk − uk−1
∥∥

2
≤ 10−5. In [11], FpGMRES method is used for the linearised systems

with a block preconditioner. In our computations, the BiCGstab method precon-
ditioned by the BDDC preconditioner is used. The linear iterations are terminated
when

∥∥rk∥∥
2
/ ‖g‖2 ≤ 10−6 or after reaching the maximum number of 100 iterations.

We compare the maximal numbers of linear iterations over all steps of the nonlin-
ear method. These are considered for two equidistant meshes, with n = 16 and 32 el-
ements per edge, corresponding respectively to 4096 and 32 768 elements, 35 937 and
274 625 nodes, and 112 724, 859 812 unknowns. Four different values of viscosity ν
are tested. Results are presented in Tables 1 and 2. Number of linear iterations
from [11] are denoted as ‘FpGMRES + block prec.’, while our current results are
denoted as ‘BiCGstab + BDDC’. Finally, numbers of nonlinear iteration required in
our calculations are reported in Table 3.

From Tables 1 and 2, we can see that the number of linear iterations is growing
with decreasing viscosity, while the dependence is similar for both methods. This
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Figure 1: Solution domain with boundary conditions (left) and mesh with 32 sub-
domains for cavity problem (right)

ν 1/20 1/40 1/80 1/160
n = 16 FpGMRES + block prec. 29 32 43 68

BiCGstab + BDDC 32 31 38 58
n = 32 FpGMRES + block prec. 28 32 42 69

BiCGstab + BDDC 18 19 23 49

Table 1: Number of linear iterations for utop1 = (1, 0, 0)

ν 1/20 1/40 1/80 1/160
n = 16 FpGMRES + block prec. 29 36 48 64

BiCGstab + BDDC 29 31 35 53
n = 32 FpGMRES + block prec. 28 35 45 61

BiCGstab + BDDC 18 19 23 49

Table 2: Number of linear iterations for utop2 = (1/
√

3,
√

2/
√

3, 0)

confirms that for this problem, the BDDC preconditioner provides a comparable
efficiency as the advanced block preconditioner from [11]. As shown in Table 3,
a reasonable convergence of the Picard iteration has been obtained for most cases.
However, skewing the velocity vector on the lid with respect to coordinate axes had
an opposite effect than we expected, with significantly worse convergence for utop1

than for utop2 in the case ν = 1/160. We do not have an explanation for this
behaviour. The solution for utop2, n = 32, and ν = 1/160 in the slice x = 0.5 is
shown in Figure 2.
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ν 1/20 1/40 1/80 1/160
utop1 n = 16 8 11 19 198

n = 32 8 12 21 114
utop2 n = 16 8 11 18 39

n = 32 8 12 21 47

Table 3: Number of nonlinear iterations in our calculations

Figure 2: Cavity flow in the plane x = 0.5, velocity vectors with magnitude (left)
and pressure with several streamtraces (right)

6. Conclusions

In this contribution, we have combined our previous developments on BDDC for
the Stokes problem [6], with extensions of the BDDC method to nonsymmetric prob-
lems from [12]. An application of the BDDC preconditioner to nonsymmetric linear
systems of equations obtained from linearisation of the incompressible Navier-Stokes
equations by means of Picard iteration is presented. Taylor-Hood finite elements
with continuous approximation of pressure are used for discretisation.

The parallel implementation of the method is employed for solving a 3-D problem
of flow in a lid-driven cavity. The required numbers of linear iterations are compared
with those by a block preconditioner published in [11], showing a comparable perfor-
mance of this approach. The BiCGstab method is used for solution of the interface
problem, which contains both velocity and pressure unknowns.

Larger tests of parallel scalability and applications to other problems will be the
subject of future research.
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Abstract

Despite their deficiencies, continuous second-order traffic flow models are still com-
monly used to derive discrete-time models that help traffic engineers to model and pre-
dict traffic flow behaviour on highways. We briefly overview the development of traffic
flow theory based on continuous flow-density models of Lighthill-Whitham-Richards
(LWR) type, that lead to the second-order model of Aw-Rascle. We will then con-
centrate on widely-adopted discrete approximation to the LWR model by Daganzo’s
Cell Transmission Model. Behaviour of the discussed models will be demonstrated by
comparing the traffic flow prediction based on these models with real traffic data on
the southern highway ring of Prague.

1. Introduction

Management systems for highway traffic have existed since 1970s. These complex
systems consist of different decision-making tools that address the management of
pavement and bridges, public transport, congestion and safety, or traffic data moni-
toring. In this paper we will concentrate on numerical aspects of three mathematical
models that can be used to predict traffic flow behaviour for highway management
purposes.

Traffic flow models can be divided into four basic groups according to the level
of detail that the model attempts to implement. The most widely employed class
of traffic flow models are probably macroscopic models that disregard individual
vehicles and consider the highway traffic to be an equivalent of compressible fluid
flow. As these models are commonly used to predict and control (manage) the
highway traffic, the role of such models is crucial for the success of any management
action: A good model provides relatively accurate predictions of the future and it is
computationally as simple as possible.

In the rest of our paper we will evaluate three possible traffic flow models that
may be considered to be good candidates for modelling of highway traffic, and we
will examine their performance in predicting highway traffic flow.
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2. Macroscopic traffic models

A macroscopic traffic model incorporates traffic flux q [veh/hr],1 traffic density %
[veh/km] and velocity v [km/hr], and describes the so-called fundamental diagram
of traffic flow. Such a model can be used to predict the behaviour of a road system
when applying control or management actions (e.g. ramp metering or speed limits).

Let us first study the number of vehicles N1 and N2 entering and leaving a road
segment of length ∆x metres during ∆t seconds. Consider a hypothetical situation
where a build-up of vehicles (N2 < N1) occurs. The change in the flow rate q is
∆q = ∆N/∆t and the change in vehicle density % is ∆% = −∆N/∆x.

As the vehicles inside the segment have no possibility to exit the road, vehicles are
conserved, with ∆N denoting the number of vehicles inside the segment. Therefore,

∆q∆t = ∆N = −∆%∆x ⇔ ∆%

∆t
+

∆q

∆x
= 0.

This justifies the following relationship for continuous q(x, t) and %(x, t):

∂%

∂t
+
∂q

∂x
= 0 or ∂t%+ ∂xq = 0. (1)

Continuous macroscopic traffic flow models are typically derived from this equation,
by introducing a form of speed-influenced density. The most prominent type of the
first-order models that result from the direct application of the above equation is the
LWR model, described in the next section.

2.1. Lighthill-Whitham-Richards

Lighthill-Whitham-Richards (LWR) model [8, 10] is a first-order model that re-
sults from a direct application of the conservation law (1) where the flow rate is
function of velocity v(%)

q(x, t) = v(%(x, t)) · %(x, t).

The speed is typically expressed as

v(%) = vf (1− %

%jam

),

where vf is the free-flow speed of solitary vehicles, and %jam denotes so-called jam
density of the road, that is the maximum possible density of vehicles in the moment
when the traffic flow has completely stopped due to traffic jam.

The model is quite simple and numerically stable and even today is often used to
study traffic flow phenomena that occur on highways or in road tunnels. According
to critical studies [5, 6], the model provides results that correspond well with the
theory of kinematic waves, and its output is consistent with empirically observed
fundamental diagram data. However, this simple model is unable to capture cer-
tain phenomena that occur in everyday traffic, like stop-an-go waves or travel speed
adaptivity.

1The unit “veh” denotes a unit vehicle, an average vehicle that makes it possible to disregard
the heterogeneity of traffic flow. Also known as PCE, passenger car equivalent.
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2.2. Second-order fluid approximations

The inability of LWR-class models to capture more complex traffic flow phenom-
ena led to creation of more elaborate models. These models use an additional set of
equations to introduce a relation similar to conservation of momentum in fluids, in
the hope that this additional level of detail would lead to a more detailed level of
description.

Two seminal works of Payne [9] and Whitham [11] emerged, and sparked a great
deal of effort resulting in numerous publications of so-called PW-type flow models,
introducing variations and extensions and proposing different numerical schemes.
However, 20 year later Daganzo [5] demonstrated that these “higher order” ap-
proaches are not appropriately constructed and lead to unrealistic results.

The only continuous traffic flow model of second order that is currently still being
studied is due to Aw and Rascle [1]. This AR-type model2 addresses most of the
previous flaws of PW-type models. It takes the composite form of two first-order
models,

∂t%+ ∂x(v%) = 0

∂t(v + p(%)) + v∂x
(
v + p(%)

)
= 0

where the pressure function of vehicle density p(%) is smooth and increasing.
An AR-type model can be quite conveniently solved using the central upwind

scheme [7, 2]. However, as we will see in our experiments, special attention has to
be paid to selecting appropriate space- and time-steps.

3. Cell Transmission Model (CTM)

Daganzo in [3] introduced the CTM, where he simplified the first-order models
by using a piecewise-linear approximation of the fundamental diagram, depicted in
Figure 1. CTM replaces the original LWR state equation (1) by a set of affine
functions

q = min (v%, qmax, w(%jam − %)) .

The follow-up paper [4] examines the evolution of traffic on a highway segment
divided into I consecutive cells numbered starting at the upstream end of the road,
i = 1, 2, . . . , I. The segments are homogeneous and their length is set equal to the
distance traveled by typical vehicle in light traffic in one clock tick (time step k of
constant length ∆t).

The cell transmission model is based on a recursion where the cell occupancy at
step k + 1 equals its occupancy at step k, plus the inflow and minus the outflow,

ni[k + 1] = ni[k] + yi[k]− yi+1[k], (2)

where the flow from cell i− 1 to i during the time interval k is assumed to be

yi[k] = min{ni−1[k − 1], Qi[k], Ni[k]− ni[k]}, (3)

2Note that AR in this paper is not related to autoregressive models.
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Figure 1: An approximation of the fundamental diagram suggested by Daganzo [3].

where Qi[k] is the capacity flow into i for time interval t, and Ni[k] − ni[k] is the
amount of empty space in cell i at time step k. Cell occupancies are updated for
each step of the clock during the simulation.

4. Experiments

In order to demonstrate the behaviour of all three discussed models, we have
tested the prediction capabilities using the data from the southern leg of the Prague
Ring (SOKP) section from km 20.1 to km 17.0. We fed the measurements, provided
by detectors at km 20.1, as a boundary condition into our models, and used the
models to predict the traffic at km 17.0. The predicted data were then compared
with the measurements provided by detectors.

The basic parameters for the simulation were the length of a segment ∆x = 150 m,
and the time step ∆t = ∆x/vf. The free flow speed vf has been identified from the
measured data as vf = 115 km/h, implying ∆t ≈ 4.7 s. Jam density %max is given
by an average length of a passenger vehicle davg = 6 m as %max = 1000/davg =
166 veh/km. Maximum vehicle flow is given by the theoretical speed limit of the
highway, which is 130 km/h.

When numerically solving a partial differential equation using a method based
on finite differences, a necessary condition of stability of the solution is provided by
Courant–Friedrichs–Lewy (CFL) condition [7]. This condition arises if explicit time
integration schemes are used for the numerical solution. As a consequence, the time
step of such a scheme must be less than a certain time, otherwise the simulation
will produce incorrect results. While the rounded time-step ∆t = 5 s is an accept-
able value for first-order LWR-type models (even if it violates the CFL condition),
integrating an AR-type model with such a large time step does not converge to
a plausible solution. The higher-order model unfortunately requires a shorter time
step fulfilling the CFL condition. Hence, for an AR-type model, ∆t = 0.5 s has been
used.

The results of all three models are compared in Figure 2. We can see that the
second-order AR-type model has still issues in following the general trends recogniz-
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Figure 2: Comparison of predictions of the LWR, AR, and CTM models with the
reference flow obtained by measurements. Left: data for one day of traffic, right: the
same data between 6:00 and 9:00.

Model ∆t [s] Steps Time [s] MSE max εr [%]

LWR 5 18017 42 59.58 42%
AR 0.5 180167 1122 80.09 101%

CTM 4.7 18880 25 27.79 14%

Table 1: Comparison of all models on real time data. MSE denotes the mean squared
error of the prediction, εr is the relative prediction error.

able in the traffic data. This is especially visible in the right panel of Figure 2 for
times between 8:00 and 9:00. The most probable reason for this anomaly is the higher
sensitivity of AR-type models to repetitive changes in the boundary conditions. Most
important observation, however, can be found in Table 1 which summarizes the com-
putational times and errors of the models: From the practical point of view the test
demonstrates that the AR-type model is almost useless due to the necessary small
time-step and resulting long computational time. A simple CTM scheme that re-
sembles cellular automata beats even the simple LWR model in both computational
speed and accuracy. Again, our assumption is that the continuous nature of the
underlying model is disturbed by the time-variable boundary conditions.

5. Conclusions

We have demonstrated three different traffic flow models and their performance
on real-world traffic flow data. Our experiment shows that from the practical point
of view, Daganzo’s CTM, a simple compartment model based on piecewise linear
approximation of the fundamental diagram of traffic flow, provides best results in
both accuracy and computational speed. In theory, a continuous higher-order model
of AR-type should be able to address traffic phenomena that the CTM is unable to
capture, however, the higher order model is significantly less numerically stable. The
need for strict fulfillment of the CFL stability condition results in tenfold decrease of
the original time-step, rendering the whole model unsuitable for practical application.
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The whole Matlab package can be downloaded from the website of the corre-
sponding author at http://staff.utia.cas.cz/prikryl/panm17.zip.
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Abstract

European and Czech directives and technical standards, approved in several last
years, force substantial changes in thermal behaviour of all buildings, including new
and reconstructed one- or more-family houses, block of flats, etc., especially radical
decrease of their energy requirements. This stimulates the development of advanced
materials, structures and technologies. Since no reliable experience with their design is
available, robust and non-expensive computational simulation approaches, compatible
with principles of classical thermodynamics, are needed. This paper demonstrates the
impact of such requirements on the development of relevant computational algorithms,
with the accent on the conception of a building as a thermal system, at various
generality levels of analysis of its particular elements and subsystems.

1. Introduction

Phrases like “solar houses”, “low-energy houses”, “passive houses”, with increas-
ing frequency of exploitation in last years, reflect the tendencies to reduce, with help
of various non-traditional energy sources, all energy demands of buildings, to their
heating and air-conditioning, operation of household equipments, etc. Although
i) some ideas of studious utilization of solar radiation can be observed even in the
ancient literature and ii) the modern experiments with low-energy houses have their
own interesting history, dating back to the first experimental house of the Mas-
sachusetts Institute of Technology (1939), most designers of building structures know
just iii) the final result of discussion (about 1989) between B. Adamson (Lund Uni-
versity, Sweden) and W. Feist (Institut für Wohnen und Umwelt in Darmstadt, Ger-
many), well-known as the “passive house standard”. This result becames 2 decades
later, after a lot of practical implementations in various countries, under different
climatic conditions, reflected in [6], a part of the European directive [13], as well as
of national technical standards, e. g. [15] in the Czech Republic.

Under the Central European conditions, the following requirements follow from [6]:
a) the building must be designed to have an annual heating and cooling demand not
higher than 15 kWh/m2 per year, b) the total primary energy consumption (for
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Figure 1: Illustrative photos from the Czech Republic, from the left: a) Block of
family houses in Židlochovice (2006). b) One-family house “Věj́ı̌r” (“Punka”) in
Brno - Bystrc (2009). c) Cooling towers of the nuclear power plant Dukovany, view
from the national nature reserve of xerophilous herbs near the township village Mo-
helno.

heating, hot water, electricity, etc.) cannot exceed 120 kWh/m2 per year, c) the
building with the total volume V must not leak more air than 0.6 V per hour at
pressure 50 Pa, as tested by the blower door, d) as an non-obligatory (unlike a),
b) and c)) additional condition: the power requirement for heating under the low-
est considerable environmental temperature (typically −12 o C) should not exceed
10 W/m2. By [6], i) passive solar building design and energy-efficient landscaping,
ii) superinsulation and elimination of line and surface “thermal bridges” (locations
of massive thermal losses), iii) advanced window technology, iv) airtightness, v) heat
recovery ventilation systems, vi) space heating utilizing solar energy and heat pumps
and vii) passive and active daylighting techniques and electrical appliances with eco-
label certification marks are needed to reach a), b), c), d). Two examples of such
houses of various types are shown on Fig. 1 a), b).

More advanced thermal considerations can be found in the literature in the last
decade: e. g. [9] takes even the solar radiation absorbed by bodies of inhabitants
into account. However, some critical comments cannot be neglected: installing and
maintaining a passive solar energy system is rather expensive, its performance de-
pends strongly on the climate, etc. Even the total economical and ecological benefits
may be not clear, namely in comparison with other projects: e. g. the heat pipeline
from the nuclear power plant in Dukovany to Brno, designed 1985 (for the urban
area with 500 000 inhabitants, 41 km long, working with water and water vapour
at the temperature between 56 and 142 o C), has never been brought into effect –
the waste vapour emits into the surroundings, including the national nature reserve,
cf. Fig. 1 c).

2. Modelling of thermal transfer in buildings

From the pragmatical point of view, building designers, respecting [13] and [15]
(which do not contain any computational formulae) need not to discuss advantages
and drawbacks of the “passive house standard”, applied to all new and reconstructed
buildings, but must be interested in its practical implementation. Evidently, the
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strict requirements of [13] and [15] stimulate the development of advanced materials,
structures and technologies. Since no reliable experience with their design is avail-
able, reliable and non-expensive computational simulation approaches are needed.

A rather general and transparent approach can be based on the principles of
classical thermodynamics, namely on the conservation of scalar quantities u(x, t) on
a domain Ω in the Euclidean space R3 and in the time interval I (t here denotes
the non-negative time, x = (x1, x3, x3) the Cartesian coordinate system in R3, ∂Ω
means the boundary of Ω in R3, supplied by the unit local formally outward normal
n(x) = (n1(x), n2(x), n3(x)), dot symbols are reserved for partial time derivatives)
with internal volume sources f on Ω × I and external surface sources g on Γ × I
where Γ ⊆ ∂Ω, later also Θ = ∂Ω \ Γ, i. e.

ε̇(u)−∇η(u) = f on Ω× I
η(u) · n = g on Γ× I
η(u) · n = ψ(u, u∗) on Θ× I ;

(1)

here all values u∗ must be prescribed on Θ×I, together with an appropriate transfer
function ψ. For simplicity, let us assume the initial condition u(., 0) = 0; a simple
transform makes it possible to get such initial problem from anyone corresponding
to the initial equilibrium. Moreover, (1) contains evolutionary (enthalpic) terms
ε(u) and fluxes η(u) (3 components), whose evaluation relies on some reasonable
(usually empirical) constitutive relations of the Fourier, Fick, Newton, etc. types,
both corresponding to scalar quantities u. In particular, under the assumption of
(at least macroscopic) material homogeneity and isotropy, it is possible to write the
linearized relations

η(u) = −∇β(u) on Ω× I ,
β(u) = λu on Ω× I ,
ε(u) = κu on Ω× I ,

ψ(u, u∗) = γ(u− u∗) on Θ× I ,

(2)

with certain constants κ, λ and γ. For instance, in the case of (thermal) energy
balance u is usually considered as the (absolute) temperature. Moreover, in (2)
κ refers to the thermal capacity (related to the unit volume), λ to the thermal
conductivity and γ to some interface heat transfer coefficient; all values u∗ should
be known from the environment, from the adjacent building component, etc. Let us
notice that the first relation of (2), respected in this paper everywhere, forces the
potential problem, with zero rotation of η(u); this needs to be generalized namely in
the analysis of air or moisture flow in rooms and structures, as sketched in [7]. Most
computational approaches make use of the weak formulation for some appropriate
function space V , typically the Sobolev space W 1,2(Ω) or its subspace: to find such
abstract function u, mapping I to V , that

(ε̇(u), v) + (∇β(u),∇v) = (f, v) + 〈g, v〉Γ + 〈ψ(u, u∗), v〉Θ on I ; (3)

here (., .) in the simplest case refer to scalar products in L2(I, L2(Ω)) or L2(I, L2(Ω)3),
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Figure 2: Photos of crucial details for deterioration of thermal properties of buildings,
from the left: a), b) Imperfect connections of particular components. c), d) Moisture
condensation on exterior surfaces.

〈., .〉Θ and 〈., .〉Γ to those in L2(I, L2(Θ)) and L2(I, L2(Γ)), which can be modified in
the sense of dualities in more general spaces.

The usual choices of u in (1), (2) and (3) are: i) the temperature, ii) the (air,
material, . . . ) density, iii) the components of velocity of the motion (related to some
appropriate reference configuration); these choices correspond to the conservation
of i) energy, ii) mass and iii) (linear and angular) momentum from classical ther-
modynamics by [1]; f and g from (1) are allowed to be applied to coupling of these
approaches, e. g. for the study of simultaneous heat and moisture transfer (i. e. energy
and mass balance). An interesting generalization can be found in [5]: in addition
to the first thermodynamical principle it takes into account also the second one,
involving some entropy considerations, working with so-called “exergy”; however,
many users of this term understand “exergy” not in a transparent physical sense,
but as certain trinity of i) energy, ii) environment and iii) sustainable development.
Moreover, some authors, like [3], advert to the priority of the comfort of individual
users (just on the example from Fig. 1 a)), as well as to the quality of the architec-
ture of particular buildings and of the whole urban area, which can be frequently in
contradiction with any economical optimization.

3. Practical evaluation of energy consumption

The evaluation of energy consumption of a building from (3) (more precisely:
from its finite-dimensional discrete version in practice) seems to be easy now (any
thermal flux can be evaluated from the complete information on the temperature
development), but hides some difficulties: i) (3) describes one domain (as a con-
structive or insulation layer, a room, etc., in a building) formally, but the whole
building is composed from a high number of such domains, whose mutual interac-
tion relies on the last additive term in (3), ii) advanced building design, from the
mathematical point of view, is a complicated optimization problem, seeking for the
minimal energy consumption, under a rather large number of conditions coming
from technical standards, as those of obligatory temperature levels and tempera-
ture stability in rooms – cf. [12]. The list of building energy software [14] contains
417 items now; nevertheless, all of them work with strong (often non-transparent)
simplifications – cf. [2].
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Figure 3: Computational evaluation of the annual energy demand of a low-energy
family house during a typical climatic year: temperature development in selected
rooms (room 1: full line, room 2: dashed line, room 3: dash-dotted line).

Figure 4: Requirements to artificial heating, corresponding to Fig. 3
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Figure 5: Cumulative energy consumption, related to Fig. 4

The non-commercial software package Therm Stabil, developed at the Institute
of Technology of Building Materials and Components of Brno University of Technol-
ogy, Faculty of Civil Engineering (not included in [14]), in the programing language
Pascal in the Delphi environment, applies the system approach, taking rooms, walls,
roofs, etc., as building elements and subsystems, connected by thermal (and some
other physical) fluxes, analyzing (3) using the finite element, volume and differ-
ence techniques together with the Rothe sequences (for time discretization). This
package is still in progress; its development is a part of research of advanced build-
ing materials and their utilization in structures and technologies, as presented at
http://www.fce.vutbr.cz/thd. Interested reader may request more detailed informa-
tion from the author of this paper or from the principal author of Therm Stabil,
Prof. Stanislav Šťastńık (e-mail stastnik.s@fce.vutbr.cz).

All numerical results presented in this paper have been obtained from this soft-
ware, except the post-processing for Fig. 3,4,5, prepared in the MATLAB environ-
ment. The principal heat fluxes to particular rooms considered in Therm Stabil come
i) from adjacent building components, ii) through windows, doors, etc., including
solar radiation, iii) thanks to the air exchange, iv) from artificial sources of heating
and / or air conditioning. Moreover, Fig. 2 demonstrates other effects observed in real
building structures, namely so-called potential “thermal bridges” on connections of
different building components (photos a), b)), as well as moisture condensation on ex-
terior surfaces with unpleasant consequences of algae population, as discussed in [10]
and [11] (photos c), d)).
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Fig. 3 shows some results of the computational simulation of thermal fluxes in
a new low-energy family house (not passive by the definition of [6], in a village close
to Brno), based on the proper description of its location, orientation and composition
and on the detailed knowledge of annual climatic data for Brno. Averaged tempera-
tures in 3 typical rooms (from 8 in total: rooms 1 and 2 contain heating equipments
of different type, room 3 is heated indirectly) are modulated in the (rather long) win-
ter period by the artificial heating; no air conditioning is applied. Such requirements
to artificial heating by Fig. 4 generate the cumulative thermal energy consumption
for the whole building, as evident from Fig. 5; no other energy demands (as those
from other electrical appliances) are taken into considerations. The measured energy
consumption in several first years of existence of this building (and 3 other tested
ones) is slightly higher – however, this depends also on the user habits and priorities
in heating, ventilation, etc.

The same software package has been applied, inspired by [4], to the simulation
of energy consumption in an existing freezing plant in Central Moravia. One could
expect much more significant energy reduction, in such an industrial building (con-
taining the freezing space at –24 oC, several offices, etc.), thanks to its sophisticated
design, than in a family house. Unfortunately, in this case, described in [8], all avail-
able energy consumption data are higher than those predicted by simulation. The
a posteriori analysis in situ showed some imperfect connections of building compo-
nents and the presence of moisture in polyurethane insulation layers (theoretically
dry, following the technical standard), as the probable immediate cause of deterio-
ration of their thermal properties.

4. Conclusion

Energy reduction in building structures is a challenge of last two decades, seen by
various authors from ecological, engineering, physical, mathematical and computa-
tional points of view. As a reasonable compromise between the traditional stationary
evaluations of thermal resistances, improper in advanced structures, and complicated
models referring to large systems of partial differential equations of evolution, this
paper offers an alternative system approach namely to the computational evaluation
of energy for heating and air-conditioning; the system complexity can be reduced
here thanks to transparent simplifications, compatible with classical thermodynam-
ics. More advanced models (e. g. those containing involving air and moisture flow,
driven by Navier - Stokes equations), up to now, suffer from expensive computations
and bad correlation between the results of deterministic calculations and available
experimental data. However, due to its social significance, the further research is
very desirable.

Acknowledgements

This work was supported by the project No. FAST-J-14-2296 of the specific uni-
versity research at Brno University of Technology.

98



References
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Abstract

The aim of this paper is to describe the numerical results of numerical modelling of
steady flows of laminar incompressible viscous and viscoelastic fluids. The mathemat-
ical models are Newtonian and Oldroyd-B models. Both models can be generalized
by cross model in shear thinning meaning.

Numerical tests are performed on three dimensional geometry, a branched channel
with one entrance and two output parts. Numerical solution of the described mod-
els is based on cell-centered finite volume method using explicit Runge–Kutta time
integration. Steady state solution is achieved for t → ∞. In this case the artificial
compressibility method can be applied.

1. Introduction

The flows in the branching channel are encountered in technical sector as well
as in biomedical applications. It is to be in human body in the complex branching
system of blood vessels. Therefore the numerical modelling of generalized Newtonian
and generalized Oldroyd-B fluids flow is very important for medical science. For the
viscoelastic character of blood, the blood flows is numerically simulated by Oldroyd-B
mathematical model with generalizing by cross model.

Therefore this work is concerned with the numerical solution of generalized New-
tonian and generalized Oldroyd-B fluids flow in the branched channel with T-junction
with round cross-section.

2. Mathematical model

The fundamental system of equations is the system of generalized Navier–Stokes
equations for incompressible fluids. This system is based on the system of balance
laws of mass and momentum for incompressible fluids

div u = 0 (1)
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ρ
∂u

∂t
+ ρ(u.∇)u = −∇P + div T (2)

where P is the pressure, ρ is the constant density, u is the velocity vector. The
symbol T represents the stress tensor.

For the different choice of mathematical model the different definition of the
stress tensor is used. For viscous flows with the representative of Newtonian fluids
the Newtonian model is considered (see e.g. [1], [2])

T = 2µD (3)

where µ is the dynamic viscosity and tensor D is the symmetric part of the velocity
gradient.

In the case of viscoelastic fluids, the simplest viscoelastic model can be used.
This model is denoted as Maxwell model

T + λ1
δT

δt
= 2µD (4)

where λ1 is the relaxation time. The symbol δ
δt
represents upper convected derivative.

By combination of two mathematical models (Newtonian and Maxwell) the be-
haviour of mixture of viscous and viscoelastic fluids can be described. This model is
called Oldroyd-B model and it has the form

T+ λ1
δT

δt
= 2µ

(

D+ λ2
δD

δt

)

. (5)

where symbols λ1 is relaxation time and λ2 is the retardation time (with dimension
of time).

In the system of equations (1) and (2) is on the right hand side the stress ten-
sor T which can be decomposed to the Newtonian (viscous) part Ts and viscoelastic
part Te. The tensor Ts is defined by Newtonian model (3) and the viscoelastic
tensor Te is defined by Maxwell model (4)

Ts = 2µsD, Te + λ1
δTe

δt
= 2µeD, (6)

where

λ2

λ1
=

µs

µs + µe
, µ = µs + µe. (7)

The upper convected derivative δ
δt
used in the viscoelastic part of the stress tensor

is defined by the relation, for more details see [1]

δTe

δt
=

∂Te

∂t
+ (u.∇)Te − (WTe −TeW)− (DTe + TeD) (8)
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where D is symmetric part and W is antisymmetric part of the velocity gradient

D =
1

2
(∇u+∇u

T ) =
1

2





2ux uy + vx uz + wx

uy + vx 2vy vz + wy

wx + uz wy + vz 2wz



 (9)

and

W =
1

2
(∇u−∇u

T ) =
1

2





0 uy − vx uz − wx

vx − uy 0 vz − wy

wx − uz wy − vz 0



 . (10)

These mathematical models for the stress tensor could be generalized. For this
case the viscosity is considered as a viscosity function and it’s defined by shear-
thinning cross model (for more details see [7])

µ(γ̇) = µ∞ +
µ0 − µ∞

(1 + (λγ̇)b)a
, γ̇ = 2

√

1

2
tr D2 (11)

with special parameters µ0 = 1.6 · 10−1 Pa.s, µ∞ = 3.6 · 10−3 Pa.s, a = 1.23, b = 0.64,
λ = 8.2 s.

3. Numerical solution

The system of equations (1),(2) is solved by the artificial compressibility method,
see [3, 4]). In its simplest form, only the continuity equation is modified by the first
term in the following equation

1

β2

∂p

∂t
+ div u = 0 (12)

where β is positive parameter. The inviscid part of modified Navier–Stokes equations
is now strongly hyperbolic and can therefore be solved by standard methods for
hyperbolic conservation laws. The system including the modified continuity equation
and the momentum equations can be written

R̃βWt + F c
x +Gc

y +Hc
z = F v

x +Gv
y +Hv

z + S, R̃β = diag(
1

β2
, 1, · · · , 1) (13)

where W is vector of unknowns, W = (p, u, v, w, te1, . . . , te6), F c, Gc, Hc and
F v, Gv, Hv are inviscid and viscous fluxes and S denotes the source term.

Eq. (13) is discretized in space by the finite volume method and the arising system
of ODEs is integrated in time by the explicit multistage Runge–Kutta scheme ([5, 6]).

The flow is modeled in a bounded computational domain where a boundary is
divided into three mutually disjoint parts: a solid wall, an outlet and an inlet. At the
inlet Dirichlet boundary condition for velocity vector is used and for a pressure and
the stress tensor Neumann boundary condition is used. At the outlet the pressure
value is given and for the velocity vector and the stress tensor Neumann boundary
condition is used. The homogeneous Dirichlet boundary condition for the velocity
vector is used on the wall. For the pressure and stress tensor Neumann boundary
condition is considered.
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4. Numerical results

This section deals with the comparison of the numerical results of generalized
Newtonian and generalized Oldroyd-B fluids flow. Numerical tests are performed
in an idealized branched channel with the circle cross-section. Fig. 1 (left) shows
the shape of the tested domain. The computational domain is discretized using
a structured, wall fitted mesh with hexahedral cells. The domain is divided to
19 blocks with 125 000 cells.
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(b) axial velocity profile

Figure 1: Structure of the computed domain (left) and axial velocity profile for
steady fully developed flow of tested fluids (right)

As initial condition the following model parameters are used: µe = 0.0004Pa.s,
µs = 0.0036Pa.s, λ1 = 0.06 s, U0 = 0.0615m.s−1, L0 = 0.0031m, ρ = 1050 kg.m−3.
Using these data, fully developed Poiseuille velocity profile (for Newtonian fluid)
is prescribed at the inlet (Dirichlet condition). At the outlet homogeneous Neu-
mann conditions for the velocity components and a constant pressure are prescribed
(0.0005Pa (main channel) and 0.00025Pa (branch)). On the vessel walls no-slip
homogeneous Dirichlet conditions are prescribed for the velocity field. In the case
of the Oldroyd-B and generalized Oldroyd-B models, homogeneous Neumann condi-
tions are imposed for the components of the extra stress tensor at all boundaries. In
Fig. 1 (right) the axial velocity profile for fully developed flow close to the branching
is shown. The lines for Newtonian and Oldroyd-B fluids are similar to the parabolic
line, as was assumed. From this velocity profile is clear that the shear thinning fluids
attain lower maximum velocity in the central part of the channel (close to the axis
of symmetry) which is compensated by the increase of local velocity in the boundary
layer close to the wall. In Fig. 2 the velocity isolines and the cuts through the main
channel and the small branch for Newtonian fluids are shown.

The axial velocity isolines for all tested fluids are shown in the Figure 3. It can be
observed from Fig. 3 that the size of separation region for generalized Newtonian and
generalized Oldroyd-B fluids is smaller than for Newtonian and Oldroyd-B fluids.

103



X

Y

Z

X

Y

Z

Figure 2: Velocity isolines of steady flows for Newtonian fluids
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Figure 3: Axial velocity isolines in the center-plane area

5. Conclusion

In this paper a finite volume solver for incompressible laminar viscous and vis-
coelastic flows in the branching channel with T-junction and circle cross section was
described. Newtonian and Oldroyd-B fluids models were generalized by the cross
model for numerical solution of generalized Newtonian and Oldroyd-B fluids flow.
The explicit Runge-Kutta method was considered for time integrating.
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The numerical results obtained by this method were presented and compared. In
the case of steady flow in this type of the 3D branching channel the numerical results
for Newtonian and Oldroyd-B fluids are similar. Future work will be devoted to an
extension of this numerical study to the unsteady simulation.
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Department of Computer Systems,
Faculty of Information Technology,

Czech Technical University in Prague,
Thákurova 9, 160 00 Prague 6, Czech Republic
jiri.khun@fit.cvut.cz, ivan.simecek@fit.cvut.cz

Abstract

Parallelization is one of possible approaches for obtaining better results in terms of
algorithm performance and overcome the limits of the sequential computation. In this
paper, we present a study of parallelization of the opt-aiNet algorithm which comes
from Artificial Immune Systems, one part of large family of population based algo-
rithms inspired by nature. The opt-aiNet algorithm is based on an immune network
theory which incorporates knowledge about mammalian immune systems in order to
create a state-of-the-art algorithm suitable for the multimodal function optimization.
The algorithm is known for a combination of local and global search with an emphasis
on maintaining a stable set of distinct local extrema solutions. Moreover, its modi-
fications can be used for many other purposes like data clustering or combinatorial
optimization. The parallel version of the algorithm is designed especially for modern
graphics processing units. The preliminary performance results show very significant
speedup over the computation with traditional central processor units.

1. Introduction

Research behind this paper represents an intersection of several scientific disci-
plines but two of them are playing a key role: artificial immune systems (AIS) and
design of parallel algorithms with an emphasis on general purpose computing via
graphic processing units (GPU).

1.1. Artificial immune systems

Artificial immune systems are a part of a large field of computational intelligence
approaches inspired by nature. Their basic principles are based on the knowledge
obtained by studying real biological immune systems, especially mammalian.

In general, we can imagine any biological immune system as a mechanism which
responses on varied incoming threats represented by pathogens and toxic substances
in order to protect the host organism. Pathogens can be represented by a wide
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range of different types of micro-organisms like parasites, bacteria, viruses, prions
and others. Every immune system’s main task is to detect such threats and try to
eliminate them.

After ages, the mammalian immune system has developed itself into a very com-
plex part of a host body and the development is still in progress based on everyday life
experiences. This is the main reason why the immune systems became an inspiration
for the computational intelligence area.

Theories behind the biological immune systems have become an inspiration for
many algorithms like Clonal Selection, Negative Selection, Danger Theory, Theory
of Immune Network and others [1]. Our research is focused on the Immune Network
algorithms which enhanced an original theory of the clonal selection.

1.2. General computing using graphics processing unit

Almost every modern GPU is able to provide a general purpose computational
performance at least an order of magnitude bigger than a present-day central pro-
cessing unit (CPU). In the area of high performance computing (HPC) and super-
computers, the use of GPUs is a standard way to achieve a significantly higher per-
formance than delivered by previous generation computers while keeping the same
power consumption.

Great performance hidden in GPUs is achieved by large amount of simple process-
ing elements working in parallel. Every individual element deals only with a small
subset from the running task. Therefore, it is necessary to carefully design an algo-
rithm for this parallel approach. But there are also many tasks that cannot be solved
in parallel at all due to their sequential nature. Parallel approach has to deal with
several aspects like data hazards or synchronization and, consequently, is increasing
algorithm complexity.

2. Opt-aiNet

The opt-aiNet algorithm [2] is based on the theory of Immune Network which
came with an idea that immune cells do not react only to foreign pathogens but
can also react to other immune cells, see Algorithm 1. Thanks to this, the whole
immune environment becomes a dynamic self-regulated network where individual
cells constantly excite and inhibit each other. This behavior also leads to a richly
diverse population of immune cells capable to react to a broad spectrum of possible
threats.

An original version of the aiNet algorithm was intended for data clustering and
was later extended to deal with optimization tasks. In our research, we are focusing
on the version for continuous multi-modal optimization, but results of the research
will be applicable across all modifications of the algorithm.

Figure 1 shows an example of the algorithm’s results: identified local maxima of
Schaffer’s function of two real-valued variables.

107



Algorithm 1 Pseudocode for the opt-aiNet aglorithm [1]

1: procedure Opt-aiNet
Input: PopulationSize, ProblemSize,Nclones,Nrandom,AffinityThreshold
Output: BestCell

2: Population← InsertInitialPopulation(PopulationSize, ProblemSize);
3: while not(TerminationCondition) do
4: EvaluatePopulation(Population);
5: BestCell ← GetBestSolution(Population);
6: Progeny ← (nothing)
7: AvgPopF itness← 0;
8: while CalculateAvgPopF it(Population) > AvgPopF itness do
9: AvgPopF itness← CalculateAvgPopF it(Population);

10: for Cell(i) in Population do
11: Clones← CreateClones(Celli, Nclones);
12: for Clone(i) in Clones do
13: Clone(i)←MutateAccordingF itnessParent(Clone(i), Cell(i));

14: EvaluatePopulation(Clones);
15: Progeny ← GetBestSolution(Clones);

16: SupressLowAffinityCells(Progeny,AffinityThreshold);
17: Progeny ← CreateRandomCells(Nrandom);
18: Population← Progeny;
19: return BestCell;

3. Analysis of parallelization

Design of parallel algorithms for general purpose GPU computations (GPGPU)
is not always a straightforward and simple approach. Especially for tasks that aren’t
completely data parallel. There are several rules that must be met otherwise the
computation performance can be even much lower that on a CPU.

The most important rule is full utilization of GPU resources. It is necessary
to run thousands or more independent computational threads. Only such amount
of threads can hide some problematic architectural areas like relatively big latency
between GPU’s cores and their memory.

Another limitation during the design of the parallel algorithm for GPU is the fact
that individual threads are run in groups containing tens of threads (usually 64). The
threads within a group are using the same instruction buffer and must perform the
same program’s code. Therefore if any of the threads is branching, the computation
must be serialized with a significant negative impact on the performance.

3.1. Parallelization of opt-AiNet

The opt-aiNet algorithm is relatively complex and contains a lot of data depen-
dencies. Therefore it is not reasonable to run it in parallel like a one piece of code.
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Figure 1: An example of results of multimodal search performed by opt-AiNet on
a testing function of two real-valued variables (Schaffer’s function). Individual marks
represent the found maxima of the function. Redrawn from [2].

During our analysis we discovered 6 individual parallel regions that can be effectively
parallelized in a large-scale satisfying the above-mentioned requirements for the ef-
ficient GPU computation. The parallel regions will be discussed in the following
subsection in detail.

Not all parallel regions are purely data-parallel. Some of them contain inter-
nal data dependencies that require intra-thread communication (e.g., via special so-
called shared memory) and synchronization. Some regions also represent a parallel
reduction pattern that require a lot of intra-kernel synchronization.

The thread synchronization and communication represent the biggest challenge
during the parallelization because GPU threads are sensitive to synchronization
methods and a wrong approach can devastate the overall performance.

3.2. Parallel regions within the opt-AiNet algorithm

As mentioned above, our analysis showed that the algorithm can be divided
into several parts with a potential for the large parallelization targeting GPU. These
parallel regions are covering almost all necessary steps that must be processed during
the algorithm’s execution.

3.2.1. Insertion of an initial or an additional population

The insertion of an initial population, consisting of individual immune cells, is
the first step of the algorithm. Another cells are also inserted during later stages of
the algorithm.

The insertion can be fully done in parallel without any significant obstacle. Every
computational thread will insert one or more immune cells and there is not any
relation between inserted cells.
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It is important to highlight that every computational thread need to have an own
independent random number generator because, for proper results of the algorithm,
every cell has to be generated with completely random initial configuration values.

3.2.2. Calculation of function values

In this step every cells’ internal configuration is used for the calculation of the
functional value of the optimized function. The calculation of the function values can
be done fully in parallel and in any order because there are not any direct bindings
between individual cells during this step.

3.2.3. Calculation of fitness values

The fitness value represents how close the particular immune cell is to the cur-
rently best found solution (the maxima of the optimized function). It is an important
value that influences another life span of the particular cell (solution).

The calculation of the fitness value is not a data parallel task because at the
beginning it is necessary to found the largest function value across all cells in the
population. The parallel reduction pattern can be used for this approach. A com-
plication within this approach is the out of order execution of the groups of threads
(as mentioned above) on GPUs that requires intergroup synchronization.

3.2.4. Cloning and mutation of the population

In this step, the individual immune cells are cloned and mutated with certain
probability. The probability is based on the fitness value due to the fact that the
cells with better fitness values have higher chance to clone themselves.

This leads to a varying size of the population that represents another problem for
a real implementation of the algorithm on a GPU because current program model
needs to specify memory regions in advance before computation.

On the other hand, the mutation as a subsequent step after the cloning does
not represent a difficult task and can be done fully in parallel assuming independent
random number generator for every computational thread.

3.2.5. Selection of the best cells

During every iteration of the opt-aiNet algorithm, a proportional part of cells is
selected for transfer to the next generation. In general, only the best solutions are
chosen therefore the algorithm needs to be able to search the whole population in
parallel and select them. Logical approach is to sort all cells by the fitness value and
then select the part of the cells with required quality.

This can be done in parallel with the help of a parallel sort pattern. There are
several types of the parallel sort algorithm suitable for GPU implementation. For
example the merge sort.

3.2.6. Suppression of similar cells

This step represents the part of the algorithm where low affinity cells with fitness
lower than the required level are suppressed in order to avoid situations where too
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many cells within a population are covering the same state space. It is the most
challenging part in the whole parallelization processes of the opt-aiNet algorithm
because every cell in the population must be compared against the rest.

Our current approach is to sort all cells in parallel by their affinity with the help
of the parallel merge pattern. Then we do the suppression on a local level within
individual groups of threads (every computational thread represents one cell). The
last step is to apply the suppression to the individual groups of threads on a global
level.

4. Conclusion

Opt-aiNet represents an important algorithm intended for the multi-modal search.
It comes from the family of AiNet algorithms which are influencing wide area of data
processing tasks like data clustering, data compression or combinatorial optimiza-
tion. As many other nature-inspired heuristics, opt-aiNet is capable to perform very
well in terms of solutions’ quality but it needs a corresponding amount of the compute
power. Therefore any possible improvement in this area is welcome.

Within this paper, we discussed possibilities of parallelization of the opt-aiNet
algorithm as a potential source of a large improvement from the perspective of com-
putational performance. We have focused especially on massive parallel approach
represented by modern GPUs allowing universal non-graphical computations because
these devices start to be a common part of almost every present-day supercomputer,
work-station or a notebook.

Our analysis is showing a large potential of possible parallelization even for the
massive parallel approach represented by GPUs and their thousands of computational
threads. On the other hand, there are also obstacles which make the parallelization
relatively challenging and non-trivial.

Our preliminary testing implementation is showing promising results and we are
expecting a speed-up factor of 5 at least if we compare the original sequential ap-
proach running on a present-day average CPU (Intel Core i5 4200M) and the GPU
implementation running on a low-end GPU (AMD Radeon HD 8750M).
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Abstract

We present the formulation of optical diffraction problem on periodic interface
based on vector tangential fields, for which the system of boundary integral equations
is established. Obtained mathematical model is numerically solved using boundary
element method and applied to sine interface profile.

1. Introduction

Diffraction of optical wave on periodical interface between two media belongs
to frequently solved problems, especially, when the grating period Λ is comparable
with wavelength λ of incident beam. Among other, this phenomenon is studied and
exploited by nanostructured optical elements design. Naturally, theoretical modelling
is of great importance in such cases. One of possible approaches has been demon-
strated in our previous paper [1], where the boundary integral equations (BIE) for
tangential fields have been introduced. Unlike the usually used rigorous coupled
waves algorithm (RCWA) advantageous in the far fields analysis [2], the BIE models
enable effective modelling of near fields in the spatially modulated region.

2. Formulation of problem

Let S : x3 = f(x1) in R3 be a smooth surface periodically modulated in the
coordinate x1 with period Λ and uniform in the x2 direction. The interface S with
normal vector ν divides the space into two semi-infinite homogeneous regions
Ω(1) = {(x1, x2, x3) ∈ R3, x3 > f(x1)}, Ω(2) = {(x1, x2, x3) ∈ R3, x3 < f(x1)} with
constant relative permittivities ε(1) 6= ε(2), ε(1) ∈ R and ε(2) ∈ C, Re (ε(2)) > 0,
Im (ε(2)) ≥ 0, and, the relative permeabilities µ(1) = µ(2) = 1 (both materials are
magnetically neutral), see Fig.1.

We aim to solve optical diffraction problem for monochromatic plane wave with
wavelength λ, i.e. with wave number k0 = 2π/λ, incoming from Ω(1) under the
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Figure 1: Structure of regions with common periodical boundary

angle of incidence θ measured from x3 direction. We seek for space-dependent am-
plitudes E(j) = E|Ω(j) , H(j) = H|Ω(j) of the electromagnetic field intensity vectors
E(x1, x2, x3)e−iωt, H(x1, x2, x3)e−iωt, where ω = c/λ and c represents the light ve-
locity in the free space. The unknown intensities can be written as

E =

{
E

(1)
0 +E(1) in Ω(1),

E(2) in Ω(2),
H =

{
H

(1)
0 +H(1) in Ω(1),

H(2) in Ω(2),
(1)

where the subscript 0 denotes incident field. In the media without free charges, the
vectors E(j), H(j), j = 1, 2 fullfill Maxwell equations (the free-space wave impedance
is embedded in the vector H) in the form

∇×E(j) = ik0µH
(j) , ∇×H(j) = −ik0ε

(j)E(j) in Ω(j) , (2)

∇ ·E(j) = 0, ∇ ·H(j) = 0 in Ω(j) . (3)

The tangential components of the fields are continuous on the boundary, i.e.

ν × (E(1) −E(2)) = o , ν × (H(1) −H(2)) = o on S . (4)

For the far fields, the well-known Sommerfeld’s radiation convergence conditions hold
that allow to consider the problem on the common interface S only [3].

We solve the problem (2)–(4) for the TM polarization of incident wave, therefore

we set E(j) = (E
(j)
1 , 0, E

(j)
3 ), H(j) = (0, H

(j)
2 , 0). To this purpose, we introduce

tangential fields in the next section that enable to reformulate given problem as
scalar integral equations at common boundary. Theoretical background of used
approach is referred in the article [1]. The boundary element method (BEM) has
been chosen to solve obtained system numerically (Sect. 4). Resulting algorithm is
tested for sine interface profile in the Sect. 5.
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3. Mathematical model

We formulate the problem (2)–(4) as boundary integral equations for tangential
fields

J = ν ×E(1) = ν ×E(2), I = −ν ×H(1) = −ν ×H(2) , (5)

where ν is an unit normal vector of the boundary S oriented as shown in Fig.1.
Similarly, τ represents an unit tangential vector of S. On the boundary we can write
J = −J2e2, where J2 = τ ·E(1) = τ ·E(2); and, I = Iττ , where Iτ = −H(1)

2 = −H(2)
2 .

We introduce a parametrization π : 〈0, 2π〉 → R2, π(t) = (p(t), q(t)) of the curve
x3 = f(x1) having unit normal vector ν(t) and corresponding tangential vector τ (t)

with the norm ν(t) =
√
p′(t)2 + q′(t)2. Resulting system of boundary integral equa-

tions for scalar components Iτ and J2 derived in [1] is of the following form:

J2(s) = −J2,0(s)− ik0µτ (s) ·
2π∫
0

Iτ (t)τ (t)
(
Ψ(1)(s, t)−Ψ(2)(s, t)

)
ν(t) dt

− 1

ik0

τ (s) ·
2π∫
0

I ′τ (t)∇t

[
1

ε(1)
Ψ(1)(s, t)− 1

ε(2)
Ψ(2)(s, t)

]
dt

+ ν(s) ·
2π∫
0

J2(t)∇t

[
Ψ(1)(s, t)−Ψ(2)(s, t)

]
ν(t) dt , (6)

Iτ (s) = −Iτ,0(s)− ik0

2π∫
0

J2(t)
(
ε(1)Ψ(1)(s, t)− ε(2)Ψ(2)(s, t)

]
ν(t) dt

+

2π∫
0

Iτ (t)ν(t) · ∇t

[
Ψ(1)(s, t)−Ψ(2)(s, t)

]
ν(t) dt . (7)

In the kernels of integral operators, the parametrized periodical Green functions
Ψ(j)(s, t), j = 1, 2 of Helmholtz equation play important role. We apply these by the
relations [4]

Ψ(j)(s, t) =
∞∑

m=−∞
Ψ(j)
m (s, t) , Ψ(j)

m (s, t) =
1

2iΛβm
ei(αm(p(s)−p(t))+βm|q(s)−q(t)|) , (8)

where αm, βm are the propagation constants defined as

αm = α + (2πm)/Λ , α = k0

√
ε(1) sin θ , α2

m + β2
m = k2

0ε . (9)

Required properties of obtained operators have been established e.g. in refer-
ences [4, 5]. Note, that the singularity of logarithmic type is of key importance,
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because it enables to split the operators into compact ones with continuous kernel
and the other with logarithmic singularity:

Ψ(j)(s, t) = Ψ
(j)
0 (s, t) +

1

2π
ln
∣∣∣∣2 sin

s− t
2

∣∣∣∣+ Ψ(j)
r (s, t) (10)

with regular part

Ψ(j)
r (s, t) =

∑
m∈Z ,m6=0

{
Ψ(j)
m (s, t)− 1

2π

e−im(s−t)

2|m|

}
. (11)

In the way of existence and uniqueness of presented model we refer to the pa-
per [6], where the properties of boundary operators are discussed in detail.

4. Numerical implementation

To solve the system of boundary integral equations (6),(7) we use collocation
method with 2N + 1 equidistant collocation points sj = 2πj

2N
, j = 0, . . . , 2N .

We seek for discrete solutions

Iτ (s) =
2N∑
k=0

ckφk(s) and J2(s) =
2N∑
k=0

dkφk(s) (12)

with interpolation basis {φk}2N
k=0. Thus, the system of trigonometric polynomials or

linear splines (piecewise linear functions) is the usual choice of basis functions. Here,
we prefer the last ones with nodes identical with collocation points (φk(sj) = δkj).
Note that an using of frequently applied cubic splines did not yield better results in
the example demonstrated in the Sect. 5.

We find advantageous to take the order N of boundary discretization equal to
the order of diffraction modes truncation in the Green function (8), so that

Ψ(j)(s, t) ≈
N∑

m=−N
Ψ(j)
m (s, t) , j = 1, 2 . (13)

Since the integral operators in the solved system are splitted by (10), we evaluate
numerically the compact operators with continuous kernels – the trapezodial rule
with nodes in collocation points (i.e. tj = sj) gives sufficiently accurate results. The
logarithmic-type singular operators can be evaluated analytically.

5. Numerical results

As an example, we consider the smooth sine boundary

S : x3 =
h

2

(
1 + cos

2πx1

Λ

)
, x1 ∈ 〈0,Λ〉 , Λ = 500 nm, h = 50 nm

between two regions with indices of refraction n1 = 1 (air) and n2 = 1.5 (glass),

nj =
√
ε(j). Incident beam of wavelength λ = 632.8 nm propagates under given
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Figure 2: The convergence of used BEM algorithm (incidence angle θ = 40◦)

Figure 3: Reflected field |H(1)
2 | for chosen incidence angle θ (N = 50).
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angle of incidence θ. The Fig. 2 illustrates increasing accuracy of approximation
with growing discretization order. We present here the absolute value of complex
tangential component of the field H at one period of common boundary.

The reflected field |H(1)
2 | is demonstrated at the Fig. 3 near to the boundary

for several incidence angles. As the both materials are lossless, the field is nearly
uniform in vertical direction.

6. Conclusion

The results obtained using presented BEM algorithm show possible applicability
of the approach based on tangential fields to many problems, in which the detailed
analysis of the diffracted optical field at an interface and/or in the near region is
needed. We suppose to exploit this method in future to surface plasmon modelling.
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Abstract

We present an asynchronous multi-domain time integration algorithm with a dual

domain decomposition method for the initial boundary-value problems for a parabolic

equation. For efficient parallel computing, we apply the three-field domain decompo-

sition method with local Lagrange multipliers to ensure the continuity of the primary

unknowns at the interface between subdomains. The implicit method for time dis-

cretization and the multi-domain spatial decomposition enable us to use different

time steps (subcycling) on different parts of a computational domain, and thus effi-

ciently capture the underlying physics with less computational effort. We illustrate

the performance of the proposed multi-domain time integrator by means of a simple

numerical example.

1. Introduction

Let Ω ⊂ R
2 be a polygonal domain split into a finite number of non-overlapping

subdomains Ωk (k = 1, . . . , ND). Let Ω =
⋃ND

k=1Ω
k, Γk = ∂Ωk, Σ =

⋃ND

k=1 Γ
k\∂Ω. We

introduce the bilinear form

((u, v))k :=

∫

Ωk

∑

|i|≤1

∑

|j|≤1

(−1)|i|aij(x)D
juDiv dx ∀u, v ∈ H1(Ωk), (1)

where i = (i1, i2) and j = (j1, j2) are two-dimensional vectors, i1, i2, j1, j2 are noneg-
ative integers and |i| = i1 + i2 and |j| = j1 + j2. The summation in (1) means that
summation should be carried out over all i and j, for which |i| ≤ 1, |j| ≤ 1 holds. We
assume that the coefficient functions aij belong to L∞(Ω). We assume there exists
a positive number ǫ (independent of v) such that ((v, v))k ≥ ǫ‖v‖2

H1(Ωk)
for every

v ∈ H1
0 (Ω

k). Further, for every u, v ∈
∏

kH
1(Ωk) we set ((u, v)) :=

∑

k((u, v))k.
From now on we are going to use the following notation: V :=

∏

kH
1(Ωk) and

M :=
∏

kH
−1/2(Γk), (·, ·) will be the usual inner product in L2(Ω), (·, ·)k will be

the inner product in L2(Ωk) and 〈·, ·〉k will be the duality pairing between H−1/2(Γk)
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andH1/2(Γk). Finally, introduce the space Φ :=
{

ϕ ∈ L2(Σ); ∃v ∈ H1
0 (Ω), ϕ = v

∣

∣

Σ

}

equipped with the norm ‖ϕ‖Φ = inf
{

‖v‖H1(Ω); v ∈ H1
0 (Ω), v

∣

∣

Σ
= ϕ

}

.We now con-
sider the following two equivalent model problems. Let T > 0 be fixed and assume
u0 ∈ H1

0 (Ω), f ∈ L2(0, T ;L2(Ω)):
(i) find u ∈ L2(0, T ;H1

0(Ω)) with ∂tu ∈ L2(0, T ;L2(Ω)), such that

(∂tu, v) + ((u, v)) = (f, v) ∀v ∈ H1
0(Ω) and u(x, 0) = u0(x) in Ω; (2)

(ii) find uk ∈ L2(0, T ;H1(Ωk)) with ∂tu
k ∈ L2(0, T ;L2(Ωk)), λk ∈ L2(0, T ;H−1/2(Γk))

and w ∈ L2(0, T ; Φ), such that uk(x, 0) = u0(x)
∣

∣

Ωk and (for k = 1, . . . , ND)






(∂tu
k, vk)k + ((uk, vk))k − 〈λk, vk〉k = (f, vk)k ∀vk ∈ H1(Ωk),

〈uk, µk〉k = 〈w, µk〉k ∀µk ∈ H−1/2(Γk),
∑ND

k=1〈λ
k, ϕ〉k = 0 ∀ϕ ∈ Φ.

(3)

Let us mention that problem (3) is well suited for domain decomposition methods.
By the standard linear parabolic equation theory [4], both problems (2) and (3)
admit the unique solution, such that u = uk in Ωk, λk = ∇u · nk

A on ∂Ωk and
w = u on Σ. To solve problem (3) numerically, we propose a new numerical scheme
which is based on the subcycling algorithm using non-standard asynchronous time
discretization amenable for parallel computing.

2. Asynchronous multi-domain discretization in time

Let us fix p ∈ N and let τ := T/p be a time step. Next, we introduce a substep
time τk = τ/sk, which is proportional to the system time step τ = tn+1 − tn, where
sk is the number of substeps for domain k, as shown schematically in Figure 1.
Further, we introduce the backward difference quotient δτkφ

k
n,j := (φk

n,j − φk
n,j−1)/τ

k

for n = 0, . . . , p− 1. In view of the assumed relationships between the discretization
steps, the present “method of asynchronous discretization in time” consists in the
following: find, successively for n = 0, 1, 2, . . . , p − 1, functions ukn,j ∈ H1(Ωk),

λkn,j ∈ H−1/2(∂Ωk) and wn+1 ∈ Φ, k = 1, . . . , ND, j = 1, . . . , sk, as solutions of the
problems

(δτku
k
n,j, v

k
j )k + ((ukn,j, v

k))k − 〈λkn,j, v
k
j 〉k = (fk

n,j, v
k
j )k ∀vkj ∈ H1(Ωk), (4)

〈ukn,j, µ
k
j 〉k = 〈wk

n,j, µ
k
j 〉k ∀µk

j ∈ H−1/2(Γk), (5)

ND
∑

k=1

〈λkn,sND
, ϕ〉k = 0 ∀ϕ ∈ Φ, (6)

starting with the functions uk0,0(x) = u0(x)
∣

∣

Ωk ∈ H1(Ωk).
In this work, the equation of continuity of fluxes is required only at the final

(system) time step, see (6). The unknown wk
n,j on the common interface Σ is linearly

interpolated at the intermediate steps by

wk
n,j =

(

1−
j

sk

)

wn +

(

j

sk

)

wn+1 ∀j = 1, . . . , sk, k = 1, . . . , ND.
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Σ Ω2Ω1

interpolation

τ1

τ2

t0 t0t0

t0 + τ2s2t0 + τt0 + τ1s1

tj

τ
(s
y
st
em

ti
m
e
st
ep
)

〈λ1
n+1,0, ϕ〉1 + 〈λ2

n+1,0, ϕ〉2 = 0 ∀ϕ ∈ Φ

Σ Ω2Ω1

λ1
n,0

λ1
n,1

λ1
n,2

λ1
n,3

λ1
n,4

λ1
n+1,0

λ2
n,0

λ2
n,1

λ2
n,2

λ2
n+1,0

〈λ1
n,0, ϕ〉1 + 〈λ2

n,0, ϕ〉2 = 0 ∀ϕ ∈ Φ

Figure 1: Substeps of the system time step. Example for ND = 2, s1 = 5, s2 = 3.

Theorem 1. Problem (4)–(6) has a unique solution.

Proof. Without loss of generality we assume ukn,0 = 0. First, we associate with any
ϕ ∈ Φ a vector function

ϕ̃ = (ũ1n,1, ũ
1
n,2, . . . , ũ

1
n,s1, ũ

2
n,1, ũ

2
n,2, . . . , ũ

2
n,s2, . . . , ũ

ND

n,1 , ũ
ND

n,2 , . . . , ũ
ND

n,sND
) ∈

∏

k

H1(Ωk)s
k

,

components of which are defined as solutions of the following Dirichlet problems

(δτk ũ
k
n,j, v

k)k + ((ũkn,j, v
k))k = 0 ∀vk ∈ H1

0 (Ω
k),

〈ũkn,j, µ
k〉k = 〈

(

j/sk
)

ϕ, µk〉k ∀µk ∈ H−1/2(Γk)

for k = 1, . . . , ND, j = 1, . . . , sk. Note that

‖|ϕ̃‖|∏
k H1(Ωk)sk

:=

ND
∑

k

sk
∑

j

‖ũkn,j‖H1(Ωk) ≤ c‖ϕ‖Φ. (7)

Now we assume a given function ψ ∈ Φ and set a vector functions

u = (u1n,1, u
1
n,2, . . . , u

1
n,s1, u

2
n,1, u

2
n,2, . . . , u

2
n,s2, . . . , u

ND

n,1 , u
ND

n,2 , . . . , u
ND

n,sND
)

and

λ = (λ1n,1, λ
1
n,2, . . . , λ

1
n,s1, λ

2
n,1, λ

2
n,2, . . . , λ

2
n,s2, . . . , λ

ND

n,1 , λ
ND

n,2 , . . . , λ
ND

n,sND
)

so that u = ˜ψ and

(δτku
k
n,j, v

k)k + ((ukn,j, v
k))k − 〈λkn,j, v

k〉k = 0 ∀vk ∈ H1(Ωk), (8)

〈ukn,j −
(

j/sk
)

ψ, µk〉k = 0 ∀µk ∈ H−1/2(Γk) (9)
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for j = 1, . . . , sk, k = 1, . . . , ND. We now define the operator S : Φ → Φ∗ by

〈S(ψ), ·〉Φ∗,Φ =

ND
∑

k=1

〈λkn,sk , ·〉k.

From (7) and (8) we easily compute (recall u = ˜ψ)

〈S(ψ), ϕ〉Φ∗,Φ =

ND
∑

k=1

〈λkn,sk , ϕ〉k ≤ α‖ψ‖Φ‖ϕ‖Φ. (10)

On the other hand, taking ϕ = ψ we have, combining (8) and (9),

〈S(ψ), ψ〉Φ∗,Φ =

ND
∑

k=1

〈λkn,sk , ψ〉k =

ND
∑

k=1

(δτku
k
n,sk, u

k
n,sk)k +

ND
∑

k=1

((ukn,sk, u
k
n,sk))k

≥ γ‖ψ‖2Φ. (11)

In (10) and (11), α and γ are positive constants, independent of ψ and ϕ. Hence, S
is an isomorphism from Φ onto Φ∗.

We now turn back, for a moment, to (4)–(6) and consider ŭkn,j ∈ H1
0 (Ω

k) and

λ̆kn,j ∈ H−1/2(∂Ωk) as the solution of the problem

(δτk ŭ
k
n,j, v

k)k + ((ŭkn,j, v
k))k − 〈λ̆kn,j, v

k〉k = (fk
n,j, v

k)k ∀vk ∈ H1(Ωk),

for k = 1, . . . , ND, j = 1, . . . , sk. The existence of such solutions is ensured by [1].
We now define the functional g ∈ Φ∗ by

〈g, ·〉Φ∗,Φ =

ND
∑

k=1

〈−λ̆kn,sk , ·〉k.

Problem (4)–(6) can now be reduced to problem

S(ψ) = g.

Now with ψ in hand, we determine ukn,j ∈ H1(Ωk) and λkn,j ∈ H−1/2(∂Ωk) as the
solution of decoupled (independent) Dirichlet problems (8) and (9) for k = 1, . . . , ND,
j = 1, . . . , sk. It is easy to verify, that ukn,j, λ

k
n,j and wk

n,j =
(

j
sk

)

ψ solve uniquely
problem (4)–(6). Recall that we considered for simplicity ukn,0 = 0. The proof is
complete.

Remark 2. Let us explicitly mention, that S corresponds to the Poincaré-Steklov

operator on Σ, well known in the theory of domain decomposition methods for elliptic

problems, see [2, 3].
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3. Numerical example

We approximate the problem (3) in space choosing Vh, Mh and Φh finite dimen-
sional subspaces of V , M and Φ and introduce uh(x, t) = Nu(x)ũ(t), wh(x, t) =

Nw(x)w̃(t) and λh(x, t) = NΛ(x)˜Λ(t), such that uh(t) ∈ Vh, wh(t) ∈ Φh and
λh(t) ∈ Mh for all t ∈ (0, T ), respectively. Application of FEM-discretization in
space leads to the following system of equations (j = 1, . . . , sk, k = 1, . . . , ND):







Mkδτku
k
n,j +Kkuk

n,j + (Ck)TΛk
n,j = f k

n,j,

Ckuk
n,j −

(

j
sk

)

Bkwn+1 −
(

1− j
sk

)

Bkwn = 0,
∑ND

k=1(B
k)TΛk

n,sk = 0.

Using the common nomenclature of heat conduction, Mk is the capacitance matrix,
Kk is the conductance matrix and the vector fk represents the nodal values of
the source corresponding to subdomain Ωk. Operators Ck and Bk are the Boolean
matrices extracting the interface degrees of freedom from u and the corresponding
degrees of freedom from w for a particular subdomain k. The above system can be
written in a matrix form, which has a block-bordered structure amenable to parallel
computation. In this work, we solve for all unknowns simultaneously by a monolithic
method using a direct solver. In order to briefly present the performance of the
proposed algorithm, we consider a simple test problem. A square of size 1.0× 1.0 is
divided into two equal subdomains, and each subdomain is divided into 5×10 square
elements, see Figure 2. We consider the analytical solution given by

u∗(x1, x2, t) = sin(πx1) sin(πx2) sin(t)

and assume the coefficient functions as constants: aij(x) = δij10
−4 in Ω. Hence, the

right hand side takes the form

f ∗ =
[

cos(t) + 2× 10−4π2 sin(t)
]

sin(πx1) sin(πx2).

M
⊗

M
1

⊗
M

2

⊗

Ω1 Ω2

x1

x2
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Figure 2: 2D test problem (left). Numerical results at the pointM for various system
time steps (right).
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Figure 3: Results at the points M1 (left) and M2 (right).

In Figures 2 and 3 we have shown the results at points M , M1 and M2 for various
system time steps τ , the ratio s1 : s2 = 10 : 1. As predicted by the theory, the
numerical results are stable and match well with the analytical solution for sufficiently
small system time step (approx. τ ≈ 0.1).
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Abstract
This work is concerned with the numerical solution of a hydrodynamic model

of the macroscopic behavior of flocks of birds due to Fornasier et al., 2011. The
model consists of the compressible Euler equations with an added nonlocal, nonlinear
right-hand side. As noticed by the authors of the model, explicit time schemes are
practically useless even on very coarse grids in 1D due to the nonlocal nature of the
equations. To this end, we apply a semi-implicit discontinuous Galerkin method to
solve the equations. We present a simple numerical test of the resulting scheme.

1. Continuous problem

In [4], a new hydrodynamic limit of a modification of the famous Cucker-Smale
model was derived. The equations describe, using macroscopic quantities, the dy-
namics of flocks of birds or other self-organizing entities. The equations are highly
nonlinear and nonlocal and are therefore extremely expensive to treat numerically.
In [4] a first simple simulation was performed using the finite volume method. Here,
we discretize the model more efficiently using the discontinuous Galerkin method.

Let Ω = (0, 1) ⊂ R and for 0 < M < +∞, we set QM := Ω × (0,M). We treat
the following problem written in conservative variables. Find w : QM → R3 such
that

∂w

∂t
+
∂f(w)

∂x
= g(w) in QM , (1)

where w = (ρ, ρu,E)> ∈ R3 is the state vector and

f(w) =
(
f1(w), f2(w), f3(w)

)>
=
(
ρu, ρu2 + p, (E + p)u

)>
,

g(w) = λ
(
0,A(w),B(w)

)>
.

(2)

Here ρ denotes the density, u velocity, E energy and p pressure. The right-hand side
functions A and B are given by

A(w)(x, t) =

∫
R
b(|x− y|)

(
u(y, t)− u(x, t)

)
ρ(x, t)ρ(y, t) dy,

B(w)(x, t) =

∫
R
b(|x− y|)ρ(x, t)

(
ρ(y, t)u(x, t)u(y, t)− 2E(y, t)

)
dy,

(3)
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where

b(|x− y|) =
K

(λ+ |x− y|2)β+1
, (4)

and K,λ > 0 and β ≥ 0 are given constants. The relations between E, p are the
classical laws of a perfect gas,

E = ρ

(
3

2
T +

u2

2

)
, p = ρT, (5)

where T is the thermodynamic temperature.
In (3), we write the right-hand side terms A,B as functions of w, although

the integrals in (3) are written terms of the nonconservative variables ρ, u, T . Ex-
pressing A,B in w in a suitable way is a key ingredient in our scheme and will be
described in detail in Section 2.3. System (1) is equipped with the initial condition
w(x, 0) = w0(x) and periodic boundary conditions.

2. Discretization

We shall use the multidimensional notation for Ω ⊂ Rd, although in our compu-
tations we have d = 1. Let Th be triangulation of Ω and Fh the system of all faces
(nodes in 1D) of Th. For each Γ ∈ Fh we choose a unit normal nΓ = ±1, which,
for Γ ⊂ ∂Ω, has the same orientation as the outer normal to Ω. For each interior
face Γ ∈ Fh there exist two neighbours K

(L)
Γ , K

(R)
Γ ∈ Th such that nΓ is the outer

normal to K
(L)
Γ . For v piecewise defined on Th and Γ ∈ Fh we introduce v|(L)

Γ is the

trace of v|
K

(L)
Γ

on Γ, v|(R)
Γ is the trace of v|

K
(R)
Γ

on Γ, 〈v〉Γ = 1
2

(
v|(L)

Γ + v|(R)
Γ

)
and

[v]Γ = v|(L)
Γ − v|

(R)
Γ . On ∂Ω, we define v|(L)

Γ , v|(R)
Γ using periodic boundary conditions.

If [· ]Γ, 〈· 〉Γ, v|(L)
Γ , v|(R)

Γ appear in an integral over Γ ∈ Fh, we omit the subscript Γ.
Let p ∈ N and let P p(K) be the space of polynomials on K ∈ Th of degree ≤ p.

The approximate solution will be sought in the space of discontinuous piecewise
polynomial functions

Sh := [Sh]
3, where Sh = {v; v|K ∈ P p(K),∀K ∈ Th}.

2.1. Discontinuous Galerkin space semidiscretization

The discrete problem is derived in the following way. We multiply (1) by a test
function ϕh ∈ Sh, integrate over K ∈ Th and apply Green’s theorem in the convective
terms. Summing over K ∈ Th and rearranging the boundary terms, we obtain∫

Ω

∂w

∂t
·ϕ dx+

∑
Γ∈Fh

∫
Γ

f(w)n · [ϕ] dS−
∑
K∈Th

∫
K

f(w) · ∂ϕ
∂x

dx =

∫
Ω

g(w) ·ϕ dx. (6)

Since w will be approximated by a function from Sh, which are discontinuous on
edges, we approximate the physical flux f(w)n through an edge Γ ∈ Fh by a so-called
numerical flux H(w(L),w(R), n) as in the finite volume method. In our computations
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we use the Vijayasundaram numerical flux, cf. [5, 2]. Now we can define the following
forms defined for w,ϕ ∈ Sh:
Convective form:

bh(w,ϕ) =
∑
Γ∈Fh

∫
Γ

H(w(L),w(R), n) · [ϕ] dS −
∑
K∈Th

∫
K

f(w) · ∂ϕ
∂x

dx,

right-hand side source term form:

lh(w,ϕ) = −
∫

Ω

g(w) ·ϕ dx.

Finally, we introduce the space semi-discrete problem: We seek wh ∈ C1([0,M ];Sh):

d

dt
(wh(t),ϕh) + bh(wh(t),ϕh) + lh(wh(t),ϕh) = 0, ∀ϕh ∈ Sh, ∀t ∈ (0,M). (7)

2.2. Time discretization

Equation (7) represents a system of nonlinear ordinary differential equations,
which must be discretized in time. Due to extreme time step restrictions caused by
the nonlocal right-hand side terms, cf. [4], we want to avoid using an explicit scheme.
However an implicit time discretization is also very expensive due to its nonlinearity.
Therefore we use the semi-implicit scheme of [3] and apply it to our problem.

Let 0 = t0 < t1 < t2 < . . . be a partition of time interval [0,M ] and define
τk = tk+1 − tk. We approximate wk

h ≈ wh(tk), where wk
h ∈ Sh. We use a first

order backward difference approximation for the time derivative. Following [3], the
nonlinear convective terms bh(w

k+1
h ,ϕh) are linearized as

b̃h(w
k
h,w

k+1
h ,ϕh) = −

∑
K∈Th

∫
K

A (wk
h)w

k+1
h · ∂ϕh

∂x
dx

+

∫
Fh

(
P+
(
〈wk

h〉, n
)
w
k+1,(L)
h + P−

(
〈wk

h〉, n
)
w
k+1,(R)
h

)
· [ϕh] dS,

(8)

where A = Df
Dw

and P+,P− are matrices defining the Vijayasundaram numerical flux,
cf. [3] for details.

As for the source terms, again we linearize them to obtain the approximation
lh(w

k+1
h ,ϕh) ≈ l̃h(w

k
h,w

k+1
h ,ϕh). The specific construction of this linearization is

technical and will be presented separately in Section 2.3.
Collecting all the considerations, we obtain the following semi-implicit DG scheme:

Definition 1. We say that the sequence wk
h ∈ Sh, k = 0, 1, . . ., is a semi-implicit

DG solution of problem (1) if for all ϕh ∈ Sh(wk+1
h −wk

h

τk
,ϕh

)
+ b̃h(w

k
h,w

k+1
h ,ϕh) + l̃h(w

k
h,w

k+1
h ,ϕh) = 0. (9)
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Equation (9) represents a linear equation for the unknown wk+1
h . By choos-

ing basis functions of Sh with supports on only one element, we obtain a sparse,
block-tridiagonal matrix with lower left and upper right blocks corresponding to
periodic boundary conditions. To solve these systems, we use the direct solver
UMFPACK, [1]. It is our goal to construct l̃h in such a way so as to preserve
the sparsity structure of the systems solved.

2.3. Linearization of the source terms lh

First, we rewrite the right-hand side integrals A,B in terms of the conservative
variables. For the integral A, we obtain

A =

∫
R
b(|x− y|)w(x, t) ·

(
w2(y, t),−w1(y, t), 0

)
dy. (10)

Similarly, we write B as

B =

∫
R
b(|x− y|)w(x, t) ·

(
− 2w3(y, t), w2(y, t), 0

)
dy. (11)

Therefore, we can rewrite the vector g(w) as

g(w)(x, t) = λ

∫
R
b(|x− y|)U2

(
w(y, t)

)
w(x, t) dy, (12)

where U2(w) ∈ R3×3 is the matrix

U2(w) =

 0 0 0
w2 −w1 0
−2w3 w2 0

 .

Approximating w(x, t) ≈ wk+1
h (x) and w(y, t) ≈ wk

h(y), we get the linearized form

l̃h(w
k
h,w

k+1
h ,ϕh) =

∫
R

(∫
R
b(|x− y|)U2

(
wk
h(y)

)
dy

)
wk+1
h (x) ·ϕh(x) dx. (13)

Adding l̃h to the scheme (9) does not change the sparsity structure of the system
matrix, since it contributes only to the block-diagonal. This is important, since
other expressions than (12) are possible, however they lead to a full system matrix,
which is undesirable. Nonetheless, the computation of these terms is extremely time
consuming due to their nonlocal nature. Even if the basis functions of Sh are local,
in order to evaluate l̃h, we must compute the inner integral

∫
R b(|x−y|)U2

(
wk
h(y)

)
dy,

which is time consuming due to the slow decay of the function b(|x− y|).
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3. Numerical experiment

In this numerical experiment, we start at t = 0 with a Gaussian distribution
of density ρ(x) = exp(−10(x − 0.5)2) along with constant temperature T = 10
and the velocity distribution u(x) = − sin(2πx). The triangulation consists of 400
piecewise quadratic elements. We observe the formation of a sharp peak in ρ, as
seen in Figure 1. Due to jumps in the solution, artificial diffusion was added, cf. [3].

Figure 1: Numerical results for density.
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Furthermore, in large regions of Ω, a state close to vacuum occurs, i.e. ρ ≈ 0 and
the matrices A ,P+,P− are no longer defined. To avoid this complication, at each
time step, wk

h was postprocessed to avoid the vacuum state: If ρ < ε or T < ε, then
set ρ := ε or T := ε and recompute the energy E using relation (5). This defines
a new state w̃k

h which is used in (9) instead of wk
h to compute wk+1

h . In our case, we
use ε := 10−5.

4. Conclusion

We have presented an efficient numerical method for the solution of a nonlinear
and nonlocal version of the compressible Euler equations describing the dynamics
of flocks of birds from [4]. To avoid severe time step restrictions, a semi-implicit
discontinuous Galerkin scheme is applied. A suitable treatment of the nonlocal terms
is given, which leads to sparse linear systems. Shock capturing and postprocessing
of vacuum are added to obtain a stable scheme. To our knowledge, these are the first
numerical results for this model, except for one test case in the original work [4].
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Abstract

Modifications of nonlinear conjugate gradient method are described and tested.

Conjugate gradient method is frequently used to solve the following problems

F (x) =
1

2
(x− x∗)TA(x− x∗) → min, or A(x− x∗) = 0,

where A is a symmetric positive definite matrix. Linear and nonlinear conjugate
gradient methods differ in line search and gradient evaluations

Linear CG : Nonlinear CG :
g1 = g(x1), s1 = −g1, F1 = F (x1), g1 = g(x1), s1 = −g1,
For i = 1, 2 . . . do For i = 1, 2 . . . do
αi = ‖gi‖

2/sTi Asi, αi > 0 and sTi g(xi + αisi) = 0,
xi+1 = xi + αisi, xi+1 = xi + αisi,
gi+1 = gi + αiAsi, Fi+1 = F (xi+1), gi+1 = g(xi+1),
If ‖gi+1‖ ≤ ε‖g1‖ then stop. If ‖gi+1‖ ≤ ε‖g1‖ then stop,
βi = ‖gi+1‖

2/‖gi‖
2, βi = ‖gi+1‖

2/‖gi‖
2,

si+1 = −gi+1 + βisi. si+1 = −gi+1 + βisi

(g(x) is the gradient of function F at the point x). Nonlinear CG method serves
for seeking minima of a general nonlinear function F (x). Instead of the perfect line
search with sT

i
g(xi + αisi) = 0, the (generalized) Wolfe conditions

F (xi + αisi)− Fi ≤ ε1αis
T

i
gi, ε2s

T

i
gi ≤ sT

i
g(xi + αisi) ≤ ε3|s

T

i
gi| (1)

are used, where 0 < ε1 < 1/2, ε1 < ε2 < 1 and ε3 ≥ 0. Basic versions of the nonlinear
conjugate gradient method use direction vectors s1 = −g1, si+1 = −gi+1+βisi, i ∈ N,
with the coefficients

βHS

i
=

yT
i
gi+1

yT
i
si

, βPR

i
=

yT
i
gi+1

gT
i
gi

, βLS

i
=

yT
i
gi+1

|gT
i
si|

(2)
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(HS–Hestenes and Stiefel, PR–Polak and Ribire, LS–Liu and Storey),

βDY

i =
gT
i+1gi+1

yT
i
si

, βFR

i =
gT
i+1gi+1

gT
i
gi

, βCD

i =
gT
i+1gi+1

|gT
i
si|

(3)

(DY–Dai and Yuan, FR–Fletcher and Reeves, CD–conjugate descent), and

βHSP

i =
pT
i
gi+1

yT
i
si

, βPRP

i =
pT
i
gi+1

gT
i
gi

, βLSP

i =
pT
i
gi+1

|gT
i
si|

(4)

(Perry’s modifications of HS, PR, LS methods). We use the notation di = xi+1 − xi,
yi = gi+1 − gi, pi = yi − di. If gT

i+1si = 0 (perfect line search) and function F is
quadratic, all these methods are identical.

Methods HS, PR, LS are more efficient than DY, FR, CD (since they keep the
conjugacy of direction vectors more successfully), but their global convergence cannot
be proved without additional modifications. Methods DY, FR, CD are globally
convergent (with some limitations concerning the stepsize selection), but they are
less efficient than HS, PR, LS methods. The following simple modifications can be
used for improving global convergence of HS, PR, LS methods.

βHS+
i

= max(0, βHS

i
), βHSC

i
= max(0,min(βHS

i
, βDY

i
)),

βPR+
i

= max(0, βPR

i
), βPRC

i
= max(0,min(βPR

i
, βFR

i
)),

βLS+
i

= max(0, βLS

i ), βLSC

i = max(0,min(βLS

i , βCD

i )).

In this contribution, we will study further modifications of nonlinear CG methods
that improve the efficiency of the basic ones. The following modifications, which use
direction vectors

si+1 = −

(

1 + βi

gT
i+1si

gT
i+1gi+1

)

gi+1 + βisi, (5)

si+1 = −gi+1 + βi

(

si −
gT
i+1si

gT
i+1yi

yi

)

(6)

guarantee that the direction vectors are descent.

Theorem 1. Consider the nonlinear CG method with direction vectors s1 = −g1
and (6) or (6), i ∈ N. Then gT

i
si = −gT

i
gi, i ∈ N. Let the parameter βi be given

by (2) and the generalized Wolfe conditions (1) with ε2 ≤ ε3 < ∞ be used. If the
objective function F is strongly convex, Lipschitz continuous and bounded from below
on R

n, then the nonlinear CG method is uniformly descent and, therefore, globally
convergent.

The following modifications, which use direction vectors

si+1 = −ϑigi+1 + βisi, (7)
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where

ϑHS

i = ϑDY

i =
yT
i
si

yT
i
si

= 1, ϑPR

i = ϑFR

i =
yT
i
si

gT
i
gi
, ϑLS

i = ϑCD

i =
yT
i
si

|gT
i
si|

, (8)

improve the conjugacy of HS, PR, LS methods and guarantee the global convergence
of DY, FR, CD methods.

Theorem 2. Consider the nonlinear CG method with direction vectors s1 = −g1
and (7), (8), i ∈ N. Let the parameter βi be given by (3) and the generalized Wolfe
conditions (1) with 0 < ε3 < ∞ be used. If the objective function F is Lipschitz
continuous and bounded from below on R

n, then the nonlinear CG method is globally
convergent.

Further nonlinear CG methods with descent property can be obtained using the
following lemma, where symbols s+, g+ denote si+1, gi+1 and s, z denote si, zi.

Lemma 1. Let s+ = −ϑg+ + βs, where 0 < ϑ ≤ ϑ ≤ ϑ and

β = gT+z −
λ

ϑ
zT zgT+s. (9)

If z ∈ R
n is an arbitrary nonzero vector and 1/4 < λ ≤ λ ≤ λ, then

−‖g+‖‖s+‖ ≤ gT+s+ ≤ −s ‖g+‖
2, s = ϑ

(

1−
1

4λ

)

> 0,

so that ‖s+‖ ≥ s‖g+‖.

Vector z is chosen in such a way that the first member in (9) corresponds to
some basic nonlinear CG method. Let ϑ = 1. Using vectors z = y/yTs, z = y/gTg,
z = y/|gTs| in Lemma 1, we obtain the descent modification of HS, PR, LS methods
with

βHSD = βHS − λ
yTygT+s

(yTs)2
, βPRD = βPR − λ

yTygT+s

(gTg)2
, βLSD = βLS − λ

yTygT+s

(gTs)2
.

Using vectors z = g+/y
Ts, z = g+/g

Tg, z = g+/|g
Ts| in Lemma 1, we obtain the

descent modification of DY, FR, CD methods with

βDYD = βDY −λ
gT+g+g

T

+s

(yTs)2
, βFRD = βFR−λ

gT+g+g
T

+s

(gTg)2
, βCDD = βCD−λ

gT+g+g
T

+s

(gTs)2
.

Theorem 3. Consider the nonlinear CG method with direction vectors s1 = −g1
and si+1 = −gi+1 + βisi, i ∈ N. Let βi = βHSD

i
or βi = βLSD

i
with 1/4 < λ ≤ λi ≤ λ

and the generalized Wolfe conditions (1) with 0 < ε3 < ∞ be used. If the objective
function F is uniformly convex, Lipschitz continuous and bounded from below on R

n,
then the nonlinear CG method is uniformly descent and, therefore,globally convergent.
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The idea of the proof of the above theorem cannot be used for the PRD method,
since the upper bound for |gT

i+1si+1|/‖gi+1‖
2 is unavailable. Setting λi = 2 in the

HSD method, we obtain the Hager–Zhang method with

βHZ

i
= βHS

i
− 2

yTi yig
T

i+1si
(yT

i
si)2

.

Setting λi = ρiy
T

i
di/y

T

i
yi in the HSD method, we obtain the Dai–Liao method with

βDL

i
= βHS

i
− ρi

gTi+1di
yT
i
si

.

Further useful nonlinear CG methods can be obtained by the modification of the
numerator in (2). In such a way we obtain coefficients

βHSM

i
=

ŷTi gi+1

yT
i
si

, βPRM

i
=

ŷTi gi+1

gT
i
gi

, βLSM

i
=

ŷTi gi+1

|gT
i
si|

, (10)

where

ŷi = gi+1 −
‖gi+1‖

‖gi‖
gi ⇒ ŷT

i
gi+1 = ‖gi+1‖

2 −
‖gi+1‖

‖gi‖
gT
i+1gi.

Since |gT
i+1gi| ≤ ‖gi+1‖ ‖gi‖, one has

0 ≤ ‖gi+1‖
2 −

‖gi+1‖

‖gi‖
gTi+1gi ≤ 2‖gi+1‖

2,

or 0 ≤ ŷTi gi+1 ≤ 2‖gi+1‖
2.

Theorem 4. Values βHSM
i , βPRM

i , βLSM
i satisfy the inequalities 0 ≤ βHSM

i ≤ 2βDY
i ,

0 ≤ βPRM

i
≤ 2βFR

i
, 0 ≤ βLSM

i
≤ 2βCD

i
. Assume that the strong Wolfe conditions (1)

with 0 < ε3 = ε2 hold. If ε2 < 1/2, the LSM method is descent. If ε2 < 1/3, the
HSM method is descent. If ε2 < 1/4, the PRM method is descent.

Nonlinear CG methods can be also derived by using variable metric updates. The
one step limited memory BFGS method has the form

si+1 = −Hi+1gi+1, Hi+1yi = ρidi,

Hi+1 = I +

(

yT
i
yi

yT
i
di

+ ρi

)

did
T

i

yT
i
di

−
yid

T

i
+ diy

T

i

yT
i
di

,

where di = xi+1 − xi = αisi, yi = gi+1 − gi a ρi > 0. If dTi gi+1 = 0, we can write

si+1 = −gi+1 −

(

yT
i
yi

yT
i
di

+ ρi

)

dT
i
gi+1

yT
i
di

di +
dT
i
gi+1

yT
i
di

yi +
yT
i
gi+1

yT
i
di

di

= −gi+1 +
yT
i
gi+1

yT
i
si

si = −gi+1 + βHS

i
si.
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Of course, we can omit only selected members containing dTi gi+1. Setting

si+1 = −gi+1 + ρi
dT
i
gi+1

yT
i
di

di −
yT
i
gi+1

yT
i
di

di

and ρi = 1, we obtain the HSP method (Perry’s modification of the HS method)
introduced in (4).

Further interesting nonlinear CG methods can be derived by using the generalized
quasi-Newton condition. The generalized QN condition can be written in the form

si+1 = −Hi+1gi+1, Hi+1yi = ρidi ⇒ yT
i
si+1 = −ρid

T

i
gi+1.

Since si+1 = −gi+1 + βisi, this condition is satisfied for βi = βDL

i , where

βDL

i
=

yT
i
gi+1 − ρid

T

i
gi+1

yT
i
si

= βHS

i
− ρi

dT
i
gi+1

yT
i
si

.

This way leads to the Dai–Liao modifications

βHSDL = βHS − ρ
gT+d

yTs
, βPRDL = βPR − ρ

gT+d

gTg
, βLSDL = βLS − ρ

gT+d

|gTs|
(11)

(here βHSDL = βDL).
Nonlinear CG methods can be improved by using restarts. In this case, we set

βi = 0 if the prescribed condition is not satisfied. The uniform descent condition

−gTi+1si+1 ≥ η‖gi+1‖‖si+1‖

(where, e.g., η = 10−8) guarantees the global convergence of the CG method. The
uniform conjugacy condition

|yTi si+1| ≤ η‖si+1‖‖yi‖

(where, e.g., η = 5.10−2) improves efficiency of methods DY, FR, CD and their
modifications.

In the tables introduced below, we demonstrate efficiency of selected nonlinear
CG methods. The first table contains results obtained using the collection of 73 prob-
lems with 10000 variables (TEST 12, http://camo.ici.ro/neculai/ansoft.htm).
The second table contains results obtained using the collection of 73 problems with
1000 variables (TEST 25, http://www.cs.cas.cz/luksan/test.html). In these
tables, NIT is the total number of iterations, NFV is the total number of function
evaluations and TIME is the total CPU time. At the same time, M denotes basic
methods (2), (3), (4), MS denotes modifications (6), MT denotes modifications (6),
MI denotes modifications (7), MD denotes modifications based on Lemma 1, MM
denotes modifications (10) a MDL denotes modifications (11). Moreover, character
+ means that value βi is replaced by max(0, βi) and character ∗ means that values
βHS+, βPR+, βLS+ are used in the formulas for βHSDL, βPRDL, βLSDL.

Further details and references can be found in Chapter 3 of the report V1152-14,
which is available at http://www.cs.cas.cz/luksan/lekce4.pdf.
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Methods of HS type Methods of PR type Methods of LS type
Method NIT - NFV TIME NIT - NFV TIME NIT - NFV TIME

M 73500 - 146562 45.5 97522 - 153458 52.5 90844 - 182707 59.2
M+ 64776 - 130153 42.2 99012 - 199048 52.2 109072 - 217871 59.1
MS+ 64267 - 127877 39.4 81135 - 162484 46.9 98472 - 197386 54.6
MI+ 64776 - 130153 42.2 59242 - 118194 37.5 92908 - 185231 49.8
MT+ 56465 - 113023 37.8 66533 - 132821 41.1 69851 - 139348 41.5
MD+ 63923 - 128143 42.0 93105 - 187343 51.3 70265 - 140260 41.7
MDL ∗ 70630 - 138223 46.7 89794 - 180989 50.8 106829 - 214506 65.0
MM 63761 - 127077 38.2 69206 - 139422 40.1 98169 - 196718 48.2

Methods of DY type Methods of FR type Methods of CD type
Method NIT - NFV TIME NIT - NFV TIME NIT - NFV TIME

M 72624 - 145100 47.1 81152 - 162513 48.0 87805 - 176088 63.7
MS 85372 - 161985 57.9 84886 - 170639 68.1 69839 - 140434 42.2
MI 72624 - 145100 47.1 70155 - 141153 49.1 83105 - 166870 49.6
MT 85249 - 169741 51.1 84001 - 175873 63.8 88634 - 184105 76.1
MD+ 84267 - 170722 52.5 82341 - 164020 61.3 75449 - 151144 46.6

Methods of HSP type Methods of PRP type Methods of LSP type
Method NIT - NFV TIME NIT - NFV TIME NIT - NFV TIME

M 94217 - 189553 99.9 98579 - 195634 52.3 89764 - 168900 55.3
M+ 75175 - 150631 46.9 65729 - 132372 40.6 85626 - 164338 48.9
MS+ 63356 - 126299 39.6 65561 - 131168 41.6 84874 - 170016 50.0
MI+ 75175 - 150631 47.0 66181 - 133055 43.6 68377 - 136899 43.8
MT+ 67290 - 136028 48.5 69115 - 138680 44.0 66094 - 132739 44.0
MD+ 80467 - 154308 51.4 71019 - 143753 47.6 87721 - 165860 53.5

Methods of HS type Methods of PR type Methods of LS type
Method NIT - NFV TIME NIT - NFV TIME NIT - NFV TIME

M 182719 - 362799 44.5 193715 - 382239 48.7 186195 - 365074 47.9
M+ 181090 - 357804 45.0 194625 - 385349 47.3 171949 - 339448 38.5
MS+ 176027 - 348089 44.7 180893 - 356713 45.4 181363 - 357095 46.6
MI+ 181090 - 357804 45.0 192212 - 377671 49.0 182165 - 358848 46.9
MT+ 179137 - 354722 39.9 166227 - 327249 36.1 172590 - 339757 37.4
MD+ 189405 - 372372 48.8 200779 - 394240 49.9 182981 - 361565 45.5
MDL ∗ 185031 - 366172 45.1 196460 - 583719 51.0 188953 - 373247 45.5
MM 175646 - 346092 45.7 188722 - 373911 47.4 190902 - 376303 46.4

Methods of HSP type Methods of PRP type Methods of LSP type
Method NIT - NFV TIME NIT - NFV TIME NIT - NFV TIME

M 180076 - 356292 45.4 183742 - 362432 47.0 194143 - 381417 48.1
M+ 174388 - 344643 44.3 173541 - 342704 38.3 204033 - 397429 51.3
MS+ 185629 - 366182 46.0 185214 - 365439 47.7 181322 - 358282 45.8
MI+ 174388 - 344643 44.3 175264 - 346739 44.9 183064 - 361115 45.4
MT+ 174902 - 345601 38.8 163751 - 322111 35.8 178082 - 349536 38.7
MD+ 190318 - 374073 42.5 191386 - 377971 48.0 183564 - 361783 45.7
MDI+ 190318 - 374073 42.5 185624 - 367332 46.1 189522 - 373814 47.1

135



Programs and Algorithms of Numerical Matematics 17
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Institute of Mathematics AS CR, Prague 2015

ACCELERATION OF LE BAIL FITTING METHOD

ON PARALLEL PLATFORMS
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Abstract

Le Bail fitting method is procedure used in the applied crystallography mainly
during the crystal structure determination. As in many other applications, there
is a need for a great performance and short execution time. In this paper, we de-
scribe utilization of parallel computing for mathematical operations used in Le Bail
fitting. We present an algorithm implementing this method with highlighted possible
approaches to its aforementioned parallelization. Then, we propose a sample parallel
version using the OpenMP API and its performance results on the real multithreaded
system. Further potential for the massive parallelization is also discussed.

1. Introduction

The crystal structure determination from powder diffraction is an important part
of applied crystallography science and its detailed description is out of scope of this
paper. However, certain basic principles are needed for better understanding of Le
Bail fitting method and its application (for details see [2, 3]).

Starting from the most elementary knowledge, one type of matter in solid state is
crystalline matter which has ordered, even periodical internal structure and therefore
can be described by a single cell of this structure. This fact also simplifies the process
of obtaining structure of an unknown sample because x-ray diffraction can be used
to obtain complete (from single crystal) or partial (from crystalline powder) image
of inner structure. Using powder for diffraction is becoming still more common
because powder sample is usually much easier to obtain than a single crystal of
studied substance. The main drawback of using powder is the need to extrapolate
part of the structure information which is lost due to the random orientation of
crystallites in sample. This fact (illustrated by Figure 1) requires great computing
power available only relatively recently to solve structure in acceptable time.

An example of data obtained by powder diffraction is depicted in Figure 2. Most
important information from diffraction profile (pattern) for further analysis are the
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Figure 1: Diffraction pattern image of polycrystalline (left) and single crystal (right)
of Cr2O3 (reprinted from [3])

Figure 2: Powder diffraction pattern of LaB6 with Bragg’s peaks labeled by Miller
indices of corresponding lattice plane sets (reprinted from [2])
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peak positions and their integrated intensities. Part of the result of structure deter-
mination are the properties of unit cells, namely its size (a, b, c) and angles between
them (α, β, γ). The relationship between these structure parameters and diffraction
profile can be summarized based on Bragg’s law into following equation:

2Θhkl = 2 arcsin
λ

2dhkl
, (1)

where peak position is denoted by 2Θ (diffraction angle), λ is wavelength of used
radiation and dhkl is interplanar distance, which can be calculated from structure
parameters. For the simplification of equations, intermediary variable Q is usually
used:

dhkl =

√

1

Qhkl

(2)

The calculation of Q itself then has to take into account level of symmetry present
in crystal structure, for example in monoclinic crystal system it can be obtained as:

Qhkl =
h2

a2 sin2 β
+

k2

b2
+

l2

c2 sin2 β
−

2hl cos β

ac sin2 β
(3)

The reason for relatively complicated and computationally complex determina-
tion of unit cell parameters from the powder diffraction profile is apparent from
Equation (3). It is easy to calculate Q if the unit cell parameters are known but not
vice versa (for details see [4, 5]). Here comes the advantage of parallel computing,
the details of which will be explained later.

2. Le Bail fitting

During the crystal structure determination is it often needed to refine the esti-
mated structure parameters to better fit the observed (measured) diffraction profile.
Le Bail fitting can be used exactly for this purpose. Usually, a single sample can be
evaluated by multiple methods, each providing slightly different results in the form
of different unit cell parameters. Le Bail fitting is then used to further refine these
results based on observed diffraction profile, to either increase their accuracy or to
select the best estimates for the next step of structure determination.

Le Bail fitting itself is an iterative process which can be difficult to parallelize.
The process can be crudely described as adjustment of structure parameters based
on difference between observed diffraction profile and diffraction profile computed
from current structure parameters estimates. This is achieved by the decomposi-
tion of diffraction profile into separate peaks with approximately Gaussian shape
and then applying following operations on all peaks. The main idea behind profile
decomposition is illustrated by Figure 3. This principle is of course applicable on an
arbitrary number of peaks and variable profile size, which allows to regard the peaks
as independent data and thus allow simple parallelization.
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Figure 3: Pattern decomposition principle

Each iteration of Le Bail fitting consists of two main steps. The goal of the first
one is to determine the integrated intensities of individual peaks in the calculated
profile, basically performing the aforementioned decomposition. That itself is an
iterative process of applying the following equation:

IK(obs) =
∑

i

(

wi,K · S2
K(obs) ·

yi(obs)

yi(calc)

)

, where (4)

• IK(obs) is the new integrated intensity of a peak, which is calculated for all
peaks in profile,

• wi,K is the weight of considered point meaning its distance from currently
calculated peak,

• S2
K(obs) is the integrated intensity obtained in previous iteration (or selected

constant in the first iteration),

• yi(obs) is the observed value of yi (single point in the profile),

• yi(calc) is the calculated value of yi (single point in the profile).

While it may seem that all points in profile are considered for increments of each
peak, in practice only points in certain neighbourhood of a peak position are actually
involved in calculation and this fact is reflected by wi,K .

The second step in each iteration of Le Bail fitting includes application of non-
linear least squares method on the structure parameters. The detailed explanation
of least squares is again out of scope of this document but it uses the fact that each
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point of diffraction profile can be viewed as a result of certain function of structure
parameters. As the set of equations for all points in profile is non-linear, the non-
linear least squares method has to be used to adjust the structure parameters to
better fit the calculated profile to the observed one. The usual solution can be
expressed as:

∆~x = (ATA)−1AT~y, where (5)

• ~x is the result of this step (adjustments to the structure parameters),

• A is the Jacobi matrix (matrix of partial derivations with one row per point
in profile),

• ~y is the vector of differences between observed and calculated diffraction profile.

The structure parameters adjustments are then applied on current parameters, diffrac-
tion profile replotted and another iteration starts if needed. The sequential algorithm
basically follows the described process.

3. Parallelization using OpenMP API

There are several possible approaches to parallelizing Le Bail fitting algorithm.
First and most obvious option offers the number of processed samples, that is sets of
parameter estimates. Since these are independent, except in using common observed
diffraction profile for reading only, each sample can be assigned to one process or
thread.

Second approach is based on number of points into which is the diffraction profile
discretized. This is applicable mostly in the first step in main iterations since the
second step consists predominantly of matrix operations.

Another way to parallelize can be derived from a number of peaks into which the
diffraction profile is decomposed. Even though it is usually less independent data
than in previous options, it is nonetheless still a viable option.

Now that the possible parallelism in the algorithm was discussed, let’s focus on
the possible implementation tools. First step is usually to utilize full CPU capabili-
ties which means to use threads or processes to run code in parallel. The OpenMP
API can be used for this purpose. OpenMP API is defined by a collection of com-
piler directives, library routines and environment variables extending the C, C++
and Fortran languages [1]. These can be used to create portable parallel programs
utilizing shared memory. It has the fork-join execution model meaning the pro-
gram starts as single thread and certain blocks of code are run in separate threads.
Shared memory implies requirements on memory management during implementa-
tion to avoid inconsistencies and undefined behaviour. Even though the changes in
the parallel version using OpenMP are relatively small, the speed-up it provides is
significant on systems with multiple CPUs or multi-core CPU as is apparent from
Table 1 with data measured on single CPU Intel Core i5-2500@4 Ghz with 4 cores.
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#data sets 40 80 120 160 200
Sequential (sec) 3.39 7.11 10.04 13.71 16.89
OpenMP@4 cores (sec) 1.23 2.37 3.30 4.16 4.99
Speedup 2.75 3.00 3.04 3.30 3.38

Table 1: Achieved performance of OpenMP accelerated version.

Moreover only parallelization based on number of processed samples is used, showing
only the fraction of potential for more massively parallel platforms.

4. Conclusions

Le Bail fitting is a great example of acceleration of practical applications by
the parallel computing. The multithreaded version using OpenMP API achieves
a great performance and almost linear speedup. Massively parallel platforms like
GPU (CUDA, OpenCL) will be able to enhance the application’s performance even
more, but at a cost of more extensive code changes.
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Abstract

In linear fracture mechanics, it is common to use the local Irwin criterion or the
equivalent global Griffith criterion for decision whether the crack is propagating or
not. In both cases, a quantity called the stress intensity factor can be used. In this
paper, four methods are compared to calculate the stress intensity factor numerically;
namely by using the stress values, the shape of a crack, nodal reactions and the global
energetic method. The most accurate global energetic method is used to simulate the
crack propagation in opening mode. In mixed mode, this method is compared with
the frequently used maximum circumferential stress criterion.

1. Introduction

The description of crack propagation is one of the most important ingredients of
linear elastic fracture mechanics (LEFM). The main questions are: At which loading
level will the crack propagation begin and in which direction will the crack propagate?

The aim of this paper is to compare numerical implementations of most frequently
used crack propagation criteria for opening mode and mixed mode in 2D.

2. Stress intensity factor concept

The stress intensity factor is a quantity used in LEFM to describe the asymptotic
singular stress field near the crack tip. The stress in the vicinity of the crack tip is
unbounded and grows in inverse proportion to the square root of distance from the
tip. Under plane stress, the asymptotic stress field is described by

σx(r, θ) =
KI√
2πr

cos
θ

2

(
1− sin
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2
sin
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2

)
− KII√

2πr
sin

θ

2

(
2− cos

θ

2
cos

3θ

2

)
,(1)
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where KI and KII are the stress intensity factors for modes I and II which represent
the loading and geometry conditions, r is the distance from the crack tip and θ is
the polar angle; see e.g. [7].

3. Crack propagation in mode I (opening mode)

In mode I, the crack is opening without sliding. Therefore, we can assume that
the crack will propagate in the original direction and we have to decide when the
propagation starts.

3.1. Local Irwin criterion

This concept was introduced by Irwin [4] in 1957. The stress intensity factor
is used to decide about the crack propagation. The propagation will start when
the value of the stress intensity factor KI reaches its critical value so-called fracture
toughness denoted by Kc .

3.2. Global Griffith criterion

This criterion was introduced by Griffith [3] in 1920. The crack will grow if
a sufficient amount of energy is released by its propagation. The criterion is based
on the strain energy release rate, defined as

G(u, a) = −1

t

∂We(u, a)

∂a
, (4)

where We(u, a) is the elastic strain energy considered as a function of the imposed
displacement u and the crack length a. The beam thickness is denoted by t; see
Figure 1.

Under plane stress and in mode I, both criteria are equivalent [2]. We can write

G(u, a) =
KI

2

E
. (5)

The rules for crack propagation according to the local Irwin and global Griffith
criteria are summarized in Table 1, where Kc resp. Gf are material properties called
fracture toughness [Nm−3/2] and fracture energy [Nm−1], resp.

Local criterion Global criterion Crack behaviour
KI < Kc G < Gf ⇒ no crack propagation
KI = Kc G = Gf ⇒ crack propagation
KI > Kc G > Gf ⇒ inadmissible (in statics)

Table 1: Crack propagation rules according to the local and global criteria
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3.3. Simulation in opening mode

Four methods have been used to calculate the stress intensity factor or the strain
energy release rate in opening mode; namely by using (i) the stress values, (ii) the
crack opening, (iii) nodal forces and (iv) the release of strain energy. The first three
methods have a local character and deal with the values near the crack tip to calcu-
late the stress intensity factor. The fourth method evaluates the change of the energy
of the whole beam when the crack is extended. Three different types of triangular
finite elements have been used for each method; namely (i) three-node element with
linear approximation of displacement, (ii) six-node element with quadratic approx-
imation and (iii) six-node quadratic element with singular shape functions on the
edges starting from the crack tip; see Figure 2. Numerical simulations have been
performed using the open-source finite element code OOFEM [6]. The relative error
of all methods in a three-point bending test with geometry according to Figure 1
have been evaluated by comparing the computed value of the stress intensity factor
with the ,,exact” values obtained by using approximate analytic formulas available
in [2], [5] and [7]. The relative errors of all methods for all types of elements are
shown in Table 2.
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3 Výpočetní modely 

Výpočty pro jednotlivé modely byly prováděny pomocí metody konečných 
prvků za předpokladu rovinné napjatosti. K výpočtům byl použit program 
„OOFEM“. Jedná se o objektově orientovaný, volně šiřitelný software určený 

pro řešení multifyzikálních problémů metodou konečných prvků, který je 
vyvíjen na katedře mechaniky Stavební fakulty ČVUT [4]. Pomocí tohoto 
programu byly pro řešený model získány hodnoty posunů a uzlových reakcí 
pro jednotlivé uzly a pro jednotlivé prvky byly vypočteny hodnoty deformací 
a napětí. Pro následné zpracování těchto hodnot a výpočty faktoru intenzity 
napětí byly vytvořeny vlastní programy v jazyce Delphi Object Pascal.  

3.1 Nosník s vrubem 

Prvním zkoumaným modelem byl prostý nosník se svislou trhlinou (vrubem) 

na spodním okraji uprostřed rozpětí, namáhaný tříbodovým ohybem, viz Ob-

rázek 3.1. Poměr  byl zvolen 4, protože pro tento poměr jsou v literatuře 

dostupné přibližné vzorce, které bude možné využít pro ověření správnosti 

numericky získaných výsledků. Dále zavedeme veličinu , která před-

stavuje poměr délky trhliny ku výšce nosníku. 

 
Obrázek 3.1: Geometrie a zatížení modelu nosníku s vrubem 

Protože nosník je osově symetrický, bylo pro zjednodušení výpočtu možné 
modelovat pouze jednu symetrickou polovinu nosníku, viz Obrázek 3.2 (a). 

Tím se snížil počet neznámých na polovinu a výpočet probíhal výrazně rych-

leji. Dalším zjednodušením bylo, že nosník nebyl zatěžován silou, ale byl mu 
v místě působení síly předepsán svislý konstantní posun. Velikost zatěžující 
síly , která by odpovídala předepsanému posunu, byla získána jako svislá 
reakce zatěžovaného uzlu. Geometrie nosníku byla zvolena následovně: výš-
ka , délka , tloušťka , délka trhliny , velikost základ-

ního trojúhelníkového prvku , , velikost trojúhelníkového prvku v okolí 
kořene trhliny . Při výpočtu metodou konečných prvků není podstatný 

 

 

 

  

Figure 1: Geometry of the three-point bending test

9 

fyzikální rozměr jednotek, proto není nutné uvádět, zda se jedná o milimetry 

nebo centimetry, ale veličiny můžeme považovat za bezrozměrné. 

 

 (a) (b) 

Obrázek 3.2: (a) geometrie modelované poloviny nosníku, (b) použitá síť 

Pro výpočet metodou konečných prvků byla použita relativně dosti jemná 

trojúhelníková síť, která byla v okolí kořene trhliny ještě výrazně zjemněna, 

viz Obrázek 3.2 (b). Celkem byly vytvořeny tři sítě lišící se typem použitých 

prvků. Nejprve síť obsahující nejjednodušší trojúhelníkové tříuzlové prvky, 

které aproximují pole posunů pomocí lineárních funkcí. Poté lepší šestiuzlo-

vé trojúhelníkové prvky, které k aproximaci pole posunů využívají kvadra-

tické funkce. A na závěr upravené kvadratické prvky, u kterých byl na 

úsečkách obsahující kořen trhliny posunut mezilehlý uzel z jedné poloviny 

do jedné čtvrtiny blíže ke kořeni trhliny, viz Obrázek 3.3. Tento posun vynu-

tí u bázových funkcí nenulových v kořeni trhliny singularitu typu 𝑟−1/2. Te-

dy stejnou, jaká se vyskytuje v asymptotickém poli napětí v okolí kořene trh-

liny. Předpokládáme, že tato úprava umožní ještě lépe vystihnout hodnoty 

napětí v okolí kořene trhliny. Tento způsob umožnil pro každou použitou 

metodu porovnat vliv typu prvků sítě. Ke generování sítí byl použit generá-

tor T3D [5]. 

           

Obrázek 3.3: Lineární, kvadratický a upravený kvadratický prvek 

3.1.1 Přibližné vzorce pro výpočet faktoru intenzity napětí 

Pro nosník s vrubem s poměrem délky ku výšce 
𝐿

ℎ
= 4 je v díle [3] k dispozici 

následující vzorec: 

ℎ 

𝑎 

𝐿/2 

𝐹/2 

Figure 2: Used finite elements: linear (left), quadratic (middle), modified singular
quadratic (right)
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Linear Quadratic Singular quadratic
Values of stress > 30 % 10 - 30 % 10 - 30 %
Shape of a crack < 10 % 2 % 1 %
Node reactions 5 - 10 % < 5 % < 5 %
Energetic method 5 % 2 % 0.5 %

Table 2: The relative errors of the computed stress intensity factor KI for different
methods and different finite elements
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Figure 3: Force-displacement diagram of the three-point bending test

The global energy method using the modified quadratic elements is the most ac-
curate but also the most time-consuming one. Figure 3 shows the load-displacement
diagram obtained with this method for a beam of the following geometry: height
h = 0.5 m, length L = 2 m, thickness t = 0.2 m, initial crack length a0 = 0.05 m,
elastic modulus E = 20 GPa, Poisson ratio ν = 0.2 and fracture toughness Kc =
4 MNm−3/2.

4. Crack propagation in mixed mode

The mixed mode represents a combination of tensile opening and in-plane shear.
The direction of crack propagation is not known in advance and has to be determined
by a suitable criterion.
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4.1. Maximum circumferential stress criterion (MCSC)

This criterion determines the crack propagation direction based on the maximal
circumferential stress σθ, which is defined as

σθ(r, θ) = σy cos2 θ + σx sin2 θ − 2τxy sin θ cos θ. (6)

Substituting from (1)–(3), we obtain

σθ(r, θ) =
KI√
2πr

cos3 θ

2
− 3

KII√
2πr

cos2 θ

2
sin

θ

2
. (7)

The angle θ with maximal circumferential stress (MCSC1) is obtained by solving the
equation

sin θ +
KII

KI

(3 cos θ − 1) = 0 (8)

with the conditions

θ ∈ (−π, π); KI > 0; KII sin
θ

2
< 0, (9)

where the ratio KII/KI is obtained by fitting (1)–(3) to the values of the stress field
in a number of Gauss points near the crack tip.

Another approach (referred to as MCSC2) is based on substituting the values of
the stress field at Gauss points into the original definition of circumferential stress (5).
After smooth of these data by a polynomial function, the angle θ that maximizes
this function can be found.

Both approaches give almost the same results; see Figure 4. The first method
(MCSC1) turned out to be numerically preferable and therefore is used in the fol-
lowing examples.

4.2. Maximum strain energy release rate criterion (MSERRC)

This criterion determines the crack propagation in the direction that leads to the
maximum strain energy release rate defined in (4). Numerical realization consists
in simulation of a number of sufficiently small crack extensions in several different
directions. For each direction, the strain energy release rate is evaluated by sub-
tracting the final strain energy from the original one and dividing by the increment
of the crack area. The obtained values are smoothed using a polynomial function,
for which the maximum is then found.

This criterion predicts, in most cases, similar crack trajectories to the MCSC.
However, application to the three-point bending test with an eccentric initial crack
leads to a different crack path; see Figure 4.
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Figure 4: Comparison of crack paths according to different criteria for the three-point
bending test with an eccentric initial crack

4.3. Comparative example

The last example is taken from [1]. It is a rectangular panel with two holes and
two initial cracks subjected to tension in the vertical direction. In this example,
both criteria lead to almost the same crack paths and the results are similar to those
from [1]; see Figure 5. The load-displacement diagrams are depicted in Figure 6.
Both criteria predict the same behaviour but the curve obtained with MCSC is not
smooth. This means that MCSC is less accurate when used to decide whether the
crack is propagating or not.

5. Conclusion

In the opening mode, the best results are obtained by the global energy method.
In the mixed mode that arises in the three-point bending test, the MSERRC criterion
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Figure 6: Comparison of load-displacement diagrams for different criteria

based on this method leads to a different crack path than the MCSC criterion using
the circumferential stress. But both MSERRC and MCSC give similar results in
other examples in mixed mode. Both criteria seem to be accurate in prediction of
the propagation angle, but to determine whether the crack propagates it is more
appropriate to use MSERRC.
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Abstract

The paper focuses on the acceleration of the computer optimization of heat radi-
ation intensity on the mould surface. The mould is warmed up by infrared heaters
positioned above the mould surface, and in this way artificial leathers in the automo-
tive industry are produced (e.g. for car dashboards). The presented heating model
allows us to specify the position of infrared heaters over the mould to obtain approx-
imately even heat radiation intensity on the whole mould surface. In this way we can
obtain the uniform material structure of artificial leather. The gradient methods are
not suitable to optimize the position of heaters because the minimized function con-
tains many local extremes. Therefore, we used an evolutionary algorithm, specifically
the differential evolution algorithm. In this case the optimization procedure needs
a lot of operations (especially when the mould volume is large and we use a large
number of heaters). A substantial acceleration of the calculation can be achieved by
parallel programming using a graphic card and nVidia CUDA architecture. The nu-
merical calculations were performed by the Matlab code written by the authors and
were run on a standard PC.

1. Introduction

The article describes the application of parallel programming for the utilization
of a graphic card and nVidia CUDA architecture on a standard PC when calculating
heat radiation intensity on a shell nickel mould surface and optimization of heat
radiation intensity. In practice, a nickel mould is at first preheated by infrared
heaters located above the outer mould surface. Then the inner mould surface is
sprinkled with a special PVC powder and the outer mould surface is continually
heated by infrared heaters.

The goal of the optimization is to determine the position of heaters over the
mould so that their position ensures approximately the same heat radiation inten-
sity on the whole mould surface. In this way we obtain uniform material structure
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and colour tone of the artificial leather. During the optimization process we have
to avoid possible collisions of two heaters as well as a heater and the mould surface.
Therefore, the optimization process is more complicated. The minimized function
has many local extremes and it is not suitable to use gradient methods in the opti-
mization process. We used an evolutionary algorithm, specifically the differential evo-
lution algorithm. Evolutionary algorithms generally require a lot of operations and
long computation time (especially if the mould volume is larger and we use a higher
number of heaters). This was the main reason for the use of parallel programming
techniques.

In the following part of the article we focus on the implementation of parallel
algorithms using the Matlab Parallel Computing Toolbox. The solved technical
problem of the heat radiation intensity optimization, the used mathematical model
and the calculation of the heat radiation intensity on a mould surface are described
in more detail in [1] and [2].

2. Mathematical model and optimization of heat radiation intensity

The heater and the warmed mould are represented in 3-dimensional Euclidean
space E3 using the Cartesian coordinate system (O, x1, x2, x3) with basis vectors
e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

The heater is represented by a straight line segment with a given length.
The position of every heater Z can be defined by the following 6 parameters
Z : (s1, s2, s3, u1, u2, ϕ), where the first three parameters are coordinates of the heater
centre, the following two parameters are the first two coordinates of the unit vector
u of the heat radiation direction (the third coordinate is negative, i.e. the heater
radiates “downward”) and the last parameter is the angle ϕ between the vertical
projection of unit vector r of the heater axis onto the x1x2-plane and the positive
part of axis x1 (the vectors u and r are orthogonal).

The outer mould surface P is described by elementary surfaces pj, where
1 ≤ j ≤ N . It holds that P = ∪pj, where 1 ≤ j ≤ N and int pi∩ int pj = ∅ for i 6= j,
1 ≤ i, j ≤ N . Each elementary surface is described by the centre of gravity Tj =
[tj1, t

j
2, t

j
3], by the unit outer normal vector vj = (vj1, v

j
2, v

j
3) at the point Tj (we suppose

vj faces “upwards ”and therefore is defined through the first two components vj1
and vj2) and by the area of elementary surface wj. Each elementary surface can thus
be defined by the following 6 parameters pj : (tj1, t

j
2, t

j
3, v

j
1, v

j
2, wj).

Now, we briefly describe the numerical computation procedure for the total heat
radiation intensity on the mould surface. We denote Lj as the set of all heaters
radiating on the jth elementary surface pj (1 ≤ j ≤ N) for the fixed position of
heaters, and Ijl the heat radiation intensity of the lth heater on the pj elementary
surface (Ijl is a constant value on the whole pj in our model). Then the total radiation
intensity Ij on the elementary surface pj is given by the following relation

Ij =
∑
l∈Lj

Ijl . (1)
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The producer of artificial leathers recommends the constant value of heat radiation
intensity Irec on the whole outer mould surface. We can define F (respectively F̃ ),
the deviation of the heat radiation intensity, by the relation

F =

∑N
j=1 |Ij − Irec|wj∑N

j=1 wj

, F̃ =

√√√√ N∑
j=1

(Ij − Irec)
2 wj . (2)

Function F defined by relation (2) (and analogously function F̃ ) has many local
extremes. As we stated in this chapter, the position of every heater is defined by
6 parameters. Therefore, 6M parameters are necessary to define the position of
all M heaters. We will successively construct a population of individuals y in the
differential evolution optimization algorithm. Every population includes NP indi-
viduals, where every individual y represents one possible position of heaters above
the mould. The generated individuals are saved in the matrix BNP×(6M+1). Every
row of this matrix represents one individual, y, and its evaluation, F (y). We seek
the individual ymin ∈ C satisfying the condition

F (ymin) = min{F (y); y ∈ C}, (3)

where C ⊂ E6M is the examined set. Every element of C is formed by a set of 6M
allowable parameters and this set defines just one position of the heaters above
the mould. The identification of the individual ymin defined by relation (3) is not
realistic in practice. But we are able to determine an optimized solution yopt.

3. Differential evolution algorithm and use of parallel programming

Now we describe schematically the particular steps of the differential evolution
algorithm named DE/rand/1/bin (for more details see [3]) which is applied to our
problem and was programmed in Matlab code by the authors.

Differential evolution algorithm

Input: the initial individual y1, population size NP , the number of used heaters M
(dimension of the problem is 6M), crossover probability CR, mutation factor f ,
the number of calculated generations NG .

Internal computation:

1. create an initial generation (G = 0) of NP individuals yGi , 1 ≤ i ≤ NP ,
2.a) evaluate all the individuals yGi of the generation G (calculate F (yGi ) for every
individual yGi ), b) store the individuals yGi and their evaluations F (yGi ) into the ma-
trix B,
3. repeat until G ≤ NG
a) for i := 1 step 1 to NP do

(i) randomly select index ki ∈ {1, 2, . . . , 6M},
(ii) randomly select indexes r1, r2, r3 ∈ {1, 2, . . . ,NP},
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where rt 6= i for 1 ≤ t ≤ 3 and
r1 6= r2, r1 6= r3, r2 6= r3;

(iii) for j := 1 step 1 to 6M do
if (rand(0, 1) ≤ CR or j = ki) then

ytrial
i,j := yGr3,j + f

(
yGr1,j − yGr2,j

)
else

ytrial
i,j := yGi,j

end if
end for (j)

(iv) if F
(
ytrial
i

)
≤ F

(
yGi
)

then yG+1
i := ytrial

i

else
yG+1
i := yGi

end for (i),
b) store individuals yG+1

i and their evolutions F
(
yG+1
i

)
(1 ≤ i ≤ NP) of the new

generation G + 1 into the matrix B, G := G + 1
end repeat.

Output:

the row of matrix B that contains the corresponding value min{F (yGi ); yGi ∈ B}
represents the best found individual yopt.
Note that function rand(0, 1) randomly chooses a number from the interval 〈0, 1〉.
The denomination yGi,j means the jth component of an individual yGi in the Gth gen-
eration. The individual yopt is the final optimized solution and includes information
about the position of each heater.

The parallel programming tools (using the graphics card and nVidia CUDA ar-
chitecture, see [4]) can be successfully applied in the optimization process. Ran-
domly generated individuals y and their evaluation F (y) (given by relation (2)) are
completely independent. Therefore, it is appropriate to use the central processing
unit (CPU) for parallel computing during the creation of a new generation G of in-
dividuals y. Calculation of the function value F (y) given by relation (2) of a new
individual y is numerically rather demanding. We gradually calculate the heat ra-
diation intensity Ij at each elementary surface pj given by relation (1). In doing
so, we use the experimentally measured values of the heat radiation intensity in the
neighbourhood of the heater when calculating the value Ijl in the relation (1). Cal-
culations of heat radiation intensities Ij and Ik on different elementary surfaces pj
and pk are completely independent. Thus we conveniently use the graphics process-
ing unit (GPU) for parallel computing when evaluating the relation (1). It is tested
whether two different heaters of individual y are in a collision or the heater and
mould surface are in collision. If a collision occurs, the individual y is penalized and
value F (y) is significantly increased. The determination of heater collisions with two
different elementary surfaces pj and pk is entirely independent and we also use GPU
for parallel computing during testing possible collisions of all heaters (the position
of heaters is given by individual y) with the mould surface.
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4. Practical examples of the use of parallelization

We made calculations on a PC with CPU: IntelCore i7-3770 CPU @3.4 GHz,
RAM: 32 GB and GPU: GeForce GTX 460. We choose the common input parameters
of the algorithm in the following examples (Example 1, Example 2): CR (crossover
factor) = 0.98, f (mutation factor) = 0.60, NP (population size) = 200 individuals.
The initial individual y1 represents even distribution of the heaters over the mould
and in the plane parallel with xy−plane and in distance 10[cm] over the mould
surface. Type of heater: capacity 1, 600 [W], length 15 [cm], width 4 [cm].

Example 1
The heated surface is a part of a spherical surface, sphere centred at the origin
of the coordinate system, radius of the sphere r = 0.4[m], the ground plan of the
surface is 0.5×0.5[m2], Irec (recommended heat radiation intensity) = 68[kW/m2],
M(number of heaters) = 16, N (number of elementary surfaces) = 1, 000, NG (num-
ber of calculated generations) = 10, 000 . The value of the function F for the initial
individual y1 is F (y1) = 20.87. We received yopt with deviation F (yopt) = 1.72 af-
ter creation of 10,000 generations. The position of heaters over the testing surface
corresponding to the individual yopt is shown on the left-hand side of Figure 1.

Real times of the calculations yopt for different default parameters are shown in
Table 1. The first column includes different numbers of elementary surfaces (N).
The following columns contain the corresponding times of calculations when us-
ing ordinary calculation (column labelled CPU), GPU (labelled CPU+GPU), CPU
with quad-core (labelled CPUPAR) and simultaneous use of a CPU with quad-core
and GPU (labelled CPUPAR+GPU). The values given in parentheses from the third
to the fifth column indicate the reduction of time calculation relative to the corre-
sponding ordinary calculation. Time-consuming calculations in the table were esti-
mated based on the average duration of one generation calculating.

Example 2
We will heat a shell nickel mould (see right-hand side part of Figure 1, this mould is
used in production of artificial leathers for dashboards of passenger cars). The size
of the mould is 1.5 × 0.4 × 0.4[m3], Irec (recommended heat radiation intensity)
= 68[kW/m2], M(number of heaters) = 96, N (number of elementary surfaces)
= 40, 663, NG (number of calculated generations) = 20, 000.

Number
of elementary CPU CPU+GPU CPUPAR CPUPAR+

surfaces +GPU

103 9.98 7.03 (1.42x) 3.68 (2.71x) 2.87 (3.48x)
104 31.13 7.39 (4.21x) 10.39 (3.00x) 3.15 (9.90x)
105 261.37 9.80 (26.67x) 98.88(2.64x) 5.00 (52.26x)
106 2552.73 34.59 (73.81x) 1153.96 (2.21x) 27.24 (93.72x)

Table 1: Time ([h]) required for the optimization procedure for 10,000 generations
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Figure 1: The position of the heaters corresponding to the individual yopt.

The value of the function F for the initial individual y1 is F (y1) = 40.14. We
received yopt with deviation F (yopt) = 6.21 after 20, 000 generations. The calcu-
lation lasted 41.06 hours using parallel computing (simultaneously GPU and CPU
with quad-core). The calculation time with only “CPU” used would take 1,072 hours
(44.66 days). The position of heaters over the mould surface corresponding to in-
dividual yopt is shown on the right-hand side of Figure 1. The presented examples
demonstrate that the computing time can be significantly reduced even on an or-
dinary PC with the use of parallel programming supported by a graphic card and
nVidia CUDA architecture.
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Abstract

Wavelets (see [2, 3, 4]) are a recent mathematical tool that is applied in signal
processing, numerical mathematics and statistics. The wavelet transform allows to
follow data in the frequency as well as time domain, to compute efficiently the wavelet
coefficients using fast algorithm, to separate approximations from details. Due to these
properties, the wavelet transform is suitable for analyzing and forecasting in time
series. In this paper, Box-Jenkins models (see [1, 5]) combined with wavelets are used
to the prediction of a time series behavior. The described method is demonstrated on
an example from practice in the conclusion.

1. Introduction

It is possible to get the first impression of a time series behavior from the line
graph. However, the conclusions received are highly subjective. More accurate infor-
mation can be provided for instance by the Box-Jenkins methodology. Box-Jenkins
models use the fact that every time series {yt | t = 1, . . . , T} is a realization of some
stochastic process. Because such models are based on the stochastic nature of time
series, correlations have important place in drawing them up. A prediction for the
time series is then created on the basis of the mathematical model received. This
paper deals with linking wavelets and Box-Jenkins models. The ability of wavelets
to decorrelate data is then used to specify forecast in time series.

The contribution is divided into following parts: The description of standard Box-
Jenkins models built is given in Section 2. Wavelets and their usage in forecasting
time series are discussed in Section 3. The procedures described are presented in the
example in Section 4.

2. Box-Jenkins models

The Box-Jenkins models are constructed for the stationary time series. It means
that the mean value and the variance function are constant, the correlation and the
covariation functions depend only on the time distance of random variables.
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A special case of the stationary process is the series {at} of uncorrelated random
variables with constant mean value and constant variance function that is called the
white noise. In what follows, suppose that every time series consists of an unsys-
tematic component {at} and of systematic components such as a trend, a seasonal
component or a cyclical component.

The stationary Box-Jenkins process is denoted by ARMA(p, q). It is a process
composed of an autoregressive process of order p and a process of moving averages
of order q. The mathematical model of it is

yt = Φ1yt−1 + · · ·+ Φpyt−p + at − θ1at−1 − θ2at−2 − · · · − θqat−q, (1)

where Φ1, . . . ,Φp are parameters of the autoregressive part and θ1, . . . , θq are param-
eters of the moving averages part of the model. This model can be rewritten using
a backshift operator Biyt = yt−i in the form

Φp(B)yt = θq(B)at, (2)

where Φp(B) = (1− Φ1B − · · · − ΦpB
p) and θq(B) = (1− θ1B − · · · − θqBq).

The process AR(p) is stationary in case when roots of the polynomial Φp(B) lie
outside the unit circle. The process MA(q) is invertible, when roots of the polyno-
mial θq(B) lie outside the unit circle. But stationary models nearly absent in the
economic practice. Fortunately, it is possible to convert a nonstationary model to
a stationary one.

If d roots of the polynomial Φp(B) lie on the unit circle, the process is not
stationary but it has a stochastic trend. Such process is denoted I(d) and it is called
the integrated process of order d. Its model has the form

(1−B)dyt = at. (3)

This model can be converted to a stationary one if d-times differentiation is applied
to it. The combination of the stationary and the integrated process leads to the
nonstationary process ARIMA(p, d, q),

Φp(B)(1−B)dyt = θq(B)at. (4)

When a seasonal oscillation with period s occurs in a time series, it is necessary
to capture the dependence among the components of the original series and also the
dependence among the components, which correspond to the different seasons. The
seasonal model SARIMA(p, d, q)(P,D,Q),

ΦP (Bs)Φp(B)(1−B)d(1−Bs)Dyt = θq(B)θQ(Bs)at, (5)

where P,D and Q are seasonal parameters of process, is used in this case. The left-
hand side of (5) supplies the dependence inside the period and the right-hand side
represents only the seasonal dependences.
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Constructions of Box-Jenkins models are especially based on the information that
is obtained from the correlograms, i.e. the graphs of values of the autocorrelation
function ACF and the partial autocorrelation function PACF.

For stationary time series, the residual ACF is defined through autocorrelations
with the delay k,

ρk =
γk
γ0

, (6)

where γk = E[(yt−µ)(yt−k−µ)]. The residual ACF indicates the range of the linear
dependence between yt and yt−k.

The partial autocorrelation with delay k is defined through partial regressive
coefficients Φkk in the autoregression of order k

yt = Φk1yt−1 + Φk2yt−2 + · · ·+ Φkkyt−k + at, (7)

where at is a value that is uncorrelated with yt−1, yt−2, . . . , yt−k. The function PACF
gives the information cleaned from the influence of the variables yt−1, yt−2, . . . , yt−k.

First estimation properties of a given time series are based on the line graph,
periodogram, ACF and PACF. Peaks in the periodogram indicate the presence of
seasonal oscillations. It means that it is necessary to work with a seasonal model.
Values greater than 1 in ACF and PACF mean that the series is not stationary. In
this case, it is necessary to consider an integrated model. Removal of non-stationarity
in the variance can be achieved by the Box-Cox transformation.

The model chosen has to be verified, i.e. monitored whether autocorrelation un-
systematic components are zero by the Box-Pearson test and how good the received
estimates of the parameters µ, φ, θ are by t-tests.

The model selected is the basis for the estimate of further development of the se-
ries. The calculation of the forecasted value yT+h is done by means of the conditional
mean value E(yT+h | yT−1, yT−2, . . . ).

3. Wavelet transform

The wavelet transform is a useful tool for detecting local properties and inves-
tigating nonstationary data. It is defined using wavelets, which form a basis in the
space L2(R). Multiresolution analysis (MRA) is the most commonly used method to
the construction of such basis.

During MRA, subspaces Vj ⊂ L2(R) are constructed with properties
1) Vj ⊂ Vj+1,
2) there exists ϕ ∈ V0 such that {ϕ0,k}, where ϕ0,k(x) = ϕ(x− k), is orthogonal and

complete in L2(R),
3) f(x) ∈ V0 if and only if f(2jx) ∈ Vj,
4) ∩jVj = {0},
5) ∪jVj = L2(R).
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When {Vj} is MRA with scaling function ϕ, then there exists a scaling vector
u = (. . . , u−1, u0, u1, . . . ) such that

ϕ(x) =
√

2
∑
k∈Z

ukϕ(2x− k). (8)

In this case, the associated wavelet ψ is defined by the formula

ψ(x) =
√

2
∑
k∈Z

vkϕ(2x− k), vk = (−1)ku1−k. (9)

It follows from the MRA that there exists a subspace Wj ⊂ L2(R) such that

Vj+1 = Vj ⊕Wj. (10)

The subspaces Vj and Wj can be generated by means of dilations and traslations of
the functions ϕ and ψ. It holds

Wj = span{ψj,k(x)}, where ψj,k(x) = 2j/2ψ(2jx− k), (11)

Vj = span{ϕj,k(x)}, where ϕj,k(x) = 2j/2ϕ(2jx− k). (12)

Moreover, it can be seen that

Vj+1 = VJ ⊕WJ ⊕WJ+1 ⊕ · · · ⊕Wj. (13)

It means that it is possible to expand every function f ∈ L2(R) into the series

f(x) =
∑
k∈Z

yJ,kϕJ,k +
∞∑
j=J

∑
k∈Z

xj,kψj,k. (14)

The scaling coefficients yj,k and the wavelet coefficients xj,k are calculated as inner
products. It holds

yj,k = 〈f, ϕj,k〉, xj,k = 〈f, ψj,k〉. (15)

It follows from (15), (11), (12), (8), (9) and (14) that

yj,k =
1√
2

∑
l

ulyj+1,2k+l, xj,k =
1√
2

∑
l

(−1)lu1−lyj+1,2k+1, (16)

yl+1,k =
1√
2

∑
m

um−2kyl,m +
1√
2

∑
m

(−1)mu1−m−2kxl,m. (17)

Computation of the wavelet coefficients is realized by means of the Mallat algo-
rithm. The relations (16) and (17) are the basis of this algorithm. First, approxi-
mations and details are computed from the data given (the decomposition phase).
The approximations correspond to the trend and the details correspond to random
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components of the time series. The process can be repeated more times. The wavelet
coefficients can be adapted or not. In the end, modified or original data are obtained
from this set of values (the reconstruction phase).

In the following example, the wavelet transform is used to construct the prediction
for the time series given. First, a decomposition into approximations and details is
done. Then the proper ARIMA model and prediction are found for each of these
parts. The resulting prediction is a sum of values from these two partial predictions.

4. Example

The monthly values of CPI inflation in the Czech Republic in the years 2004–2014
are given in Table 1. Find a suitable ARIMA model for this series from January 2004
to December 2012. Make a forecast for the rest of the series using the ARIMA model
and then using ARIMA model modified by wavelets. Compare the results received
to each other.

Table 1: Inflation 2000–2014

Solution. On the basis of ACF and PACF, the original time series were modeled
through ARIMA(3,2,1) model.

Further, the decomposition of the time series to approximations and details by
using the Daubechies wavelet Db3 was done. The first order extrapolation was used
to expand the data beyond boundary. This allowed receiving such approximation
coefficients that are close to the values of the original time series.

In the next step, appropriate ARIMA models were selected for the approximations
and for the details separately. The approximation coefficients are not identical with
the time series values, because the information is lost when wavelet decomposition
is made. Moreover, a small change of range (e.g. a truncation of the time series
or an extension of the data beyond boundary) may affect the shape of the ARIMA
model. Therefore, Box-Jenkins models are different for the original data and for
approximations.

The approximations were modeled with the help of ARIMA(2,2,1) process and
the details were modeled as ARIMA(2,0,1) process in this example. The prognosis
for the time series was obtained by adding up the forecasts for approximation and
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details. Note that it is possible to realize prediction using approximations only and
ignore details, when the details are detected like random noise.

Choice of ARIMA models affects the shape of the predictions. Adequacy of the
models is assessed by means of corresponding graphs ACF and PACF. Comparison
of the predictions for the next 15 months is shown in Figure 1. Comparison of the
values received is presented in Table 2.

Figure 1: Comparison of predictions

Table 2: Comparison of predictions

The root mean square error RMSE = 1.07178 in case of the ARIMA model and
RMSE = 0.78320 in case of the model that uses the wavelet transform. It can be
seen that the prognosis was improved by 36.8% when the wavelet modification was
used.

5. Conclusion

The example has shown that the ARIMA model modification can lead to im-
proved estimation of time series evolution. Note that wavelets can be used not only
in forecasting non-stationary time series, but also to detect sudden changes, or to
select cycles or fractal nature of time series.

6. Acknowledgement

This work was supported by project GAČR P403/12/1811: Unconventional man-
agerials decision making methods development in enterprise economics and public
economy.

161



References
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Abstract

FRAP (Fluorescence Recovery After Photobleaching) is a measurement technique

for determination of the mobility of fluorescent molecules (presumably due to the

diffusion process) within the living cells. While the experimental setup and protocol

are usually fixed, the method used for the model parameter estimation, i.e. the data

processing step, is not well established. In order to enhance the quantitative analysis

of experimental (noisy) FRAP data, we firstly formulate the inverse problem of model

parameter estimation and then we focus on how the different methods of data pre-

processing influence the confidence interval of the estimated parameters, namely the

diffusion constant p. Finally, we present a preliminary study of two methods for the

computation of a least-squares estimate p̂ and its confidence interval.

1. Introduction

The FRAP technique is based on measuring the change in fluorescence intensity in
a region of interest (ROI - generally a Euclidean 2D or 3D domain). These changes
are induced by an external stimulus, a high-intensity laser pulse provided by the
CLSM (Confocal Laser Scanning Microscopy). The stimulus, also called bleaching,
causes an (ir)reversible loss in fluorescence in the bleached area without any damage
to intracellular structures. After the bleach, the observed recovery in fluorescence
reflects the mobility (related to diffusion) of fluorescent compounds from the area
outside the bleach.

Based on spatio-temporal 2D FRAP images, the process of diffusive transport
can be reconstructed using either a closed form model or a numerical simulation
based model. In this paper, we study both approaches. We show the results for the
oversimplified one-spatial-point Moullineaux method [4] and the results based on the
numerical integration of the Fick diffusion PDE (Partial Differential Equation) with
the realistic initial and boundary conditions [5].
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2. Parameter estimation based on spatio-temporal data

We aim to present a parameter estimation problem with spatio-temporal exper-
imental observation in a comprehensive mathematical framework allowing simulta-
neously to determine both the parameter value p (generally p ∈ R

q, q ∈ N)1 and
the corresponding confidence interval proportional to the output noise and a quan-
tity related to the sensitivity, see (7). The data are represented by a (measured)
signal on a Cartesian product of the space-points (xi)

n
i=1 and time-points (tj)

m
j=1; let

NData := m × n be the total number of spatio-temporal data points. We define the
operator S : Rq → R

NData that maps parameter values p1, . . . , pq to the solution of
the underlying initial-boundary value problem, e.g. (9), evaluated at points (xi, tj):

S(p) = {y(xi, tj, p) ∈ R, 1 ≤ i ≤ n, 1 ≤ j ≤ m}. (1)

Some commonly used FRAP methods do not employ all the NData measured
values at points {(xi, tj), i = 1, . . . , n, j = 1, . . . , m}. They either employ some of
the values or perform some preprocessing (e.g. space averaging, see [6]). Hence we
further define the observation operator G : RNData → R

Ndata that evaluates the set of
values S(p) on a certain subset of the full data space (Ndata ≤ NData):

G(S(p)) = (z(xl, tl, p))
Ndata

l=1 (2)

We now define the forward map F : p → z(xl, tl, p)
Ndata

l=1 . Here, F = G ◦ S
represents the parameter-to-output map, defined as the composition of the PDE
solution operator S and the observation operator G.2 Our regression model is now

F (p) = data, (3)

where the data are modeled as contaminated with additive Guassian noise

data = F (pT ) + e = (z(xl, tl, pT ))
Ndata

l=1 + (el)
Ndata

l=1 .

Here pT ∈ R
q denotes the true values and e ∈ R

Ndata is a data error vector
which we assume to be normally distributed with variance σ2, i.e. ei = N (0, σ2)
i = 1, . . . , Ndata.

Given some data, the aim of the parameter estimation problem is to find pT ,
such that (3) is satisfied in some appropriate sense. Since (3) usually consists of an
overdetermined system (there are more data points than unknowns), it cannot be
expected that (3) holds with equality, but instead an appropriate notion of a solu-
tion is that of a least-squares solution p̂ (with ‖ . ‖ denoting the Euclidean norm
on R

Ndata):
‖ data− F (p̂) ‖2= min

p
‖ data− F (p) ‖2 . (4)

1We prefer this more general definition of the model parameter vector instead of the single scalar

quantity because we aim to work with more complex model than (9) in the near future.
2For the one-point Moullineaux method [4], only the point with the spatial coordinate x = 0

is measured, i.e. GM : z(tj , p) := z(0, tj, p) = y(0, tj, p), j = 1, . . . , Ndata = m. For the second

method, we reduce the data space taking the so-called relevant data only [6], i.e. GPDE : z(xl, tl, p) =

y(xi, tj , p), i = 1, . . . , n∗ ≤ n, j = 1, . . . ,m∗ ≤ m, l = 1, . . . , Ndata = m∗ × n∗.
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Sensitivity analysis and confidence intervals

For the sensitivity analysis we require the Fréchet-derivative F ′[p1, . . . , pq] ∈
R

Ndata×q of the forward map F , that is

F ′[p1, . . . , pq] =
(

∂
∂p1

F (p1, . . . , pq) . . . ∂
∂pq

F (p1, . . . , p)
)

=









∂
∂p1

z(x1, t1, p) . . . ∂
∂pq

z(x1, t1, p)

. . . . . . . . .

. . . . . . . . .
∂

∂p1
z(xNdata

, tNdata
, p) . . . ∂

∂pq
z(xNdata

, tNdata
, p)









.

A corresponding quantity is the Fisher information matrix (FIM)

M [p1, . . . , pq] = F ′[p1, . . . , pq]
TF ′[p1, . . . , pq] ∈ R

q×q. (5)

Based on the book of Bates and Watts [1], we can estimate confidence intervals.
Suppose we have computed p̂ as a least-squares solution in the sense of (4). Let us
define the residual as

res2(p̂) = ‖F (p̂)− data‖2 =

Ndata
∑

i=1

[datai − z(xi, ti, p̂)]
2 . (6)

Then according to [1], it is possible to quantify the error between the computed
parameters p̂ and the true parameters pT .

Having only one single scalar parameter p as unknown, the Fisher information

matrixM collapses into the scalar quantity
∑Ndata

i=1

[

∂
∂p
z(xi, ti, p) |p=p̂

]2

, and the 1−α

confidence interval for full observations is described as follows

(p̂− pT )
2

Ndata
∑

i=1

[

∂

∂p
z(xi, ti, p) |p=p̂

]2

≤
res2(p̂)

Ndata − 1
f1,Ndata−1(α), (7)

where f1,Ndata−1(α) corresponds to the upper α quantile of the Fisher distribution
with 1 and Ndata − 1 degrees of freedom.

In (7), several simplifications are possible. Note that according to our noise

model, the residual term res2(p̂)
Ndata−1

is an estimator of the error variance [1] such that
the approximation

res2(p̂)

Ndata − 1
∼ σ2 (8)

holds if Ndata is large. Moreover, we remind the reader that the Fisher distribu-
tion with 1 and Ndata − 1 degrees of freedom converges to the χ2-distribution as
Ndata → ∞. Hence, the term f1,Ndata−1(α) can approximately be viewed as indepen-
dent of Ndata as well and of a moderate size.
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3. Two FRAP methods: Assessment of uncertainty

Let us proceed to the FRAP measurement technique [4, 5]. We assume the
special geometry residing in one-dimensional simplification getting the measured
fluorescent intensity level y as a function of the spatial coordinate x, time t and
diffusion coefficient p (generally time dependent, e.g. p = (pj)

m
j=1):

∂y

∂t
− p

∂2y

∂x2
= 0 , (9)

in (t0, T )×Ω, with suitable boundary conditions on (t0, T )×∂Ω and initial conditions
in Ω, where Ω ⊂ R. Problem (9) represents a reliable model of the FRAP process.
The corresponding inverse formulation is used in our software CA-FRAP3 for the
processing of the real FRAP data resulting in the solution vector (p̂j)

m
j=1. Here,

in this paper, the software CA-FRAP is further used (in Subsection 3.2) for the
simulation of virtual FRAP data and the subsequent evaluation of the FIM.

According to [2], the standard error of a parameter pk estimate, i.e. SE(p̂k), is

SE(p̂k) = σ̂
√

Mkk
−1, (10)

where σ̂ is the data error variance estimate. Relation (10) highlights the importance
of the FIM and is further used for the comparison of two FRAP data processing
methods.

3.1. The one-point Moullineaux method

C.W. Moulineaux et al. [4] measured one-dimensional bleaching profiles (with
common variance σ2) along the specimen long axis. They took the ROI as coincident
with the real axis (x ∈ R) and the initial bleaching profile (of bleached particles)
as the Gaussian with half-width r0 at height y0,0e

−2, i.e. y(x, t0, p) = y0,0 exp
−2x2

r02
.

Here t0 corresponds to the initial time and can be set to zero. Then, the solution
y(x, t, p) of the diffusion equation (9) for the bleached particles is

y(x, t, p) =
y0,0 r0

√

r02 + 8pt
exp

−2x2

r02 + 8pt
, x ∈ R, t ∈ [0, T ]. (11)

The time evolution of the maximum depth y(0, t, p) is taken by Moullineaux et al.

as the single observed spatial data point zM (t, p).4 It holds zM(t, p) =
r0 y0,0√
r02+8pt

.

The FIM, based on the semi-relative sensitivities, collapses to a scalar quantity

MM =
∑m

j=1

[

∂zM (tj ,p)

∂p
p
]2

=
∑m

j=1
(4r0ptj)

2

(r02+8ptj)3
= 1

4

∑m
j=1

(8sj)
2

(1+8sj)3
, where sj :=

ptj
r02

and

an estimate p̂ is taken instead of p.

3See [3, 5] for more details or mail to: matonoha@cs.cas.cz.
4The authors of [4] used the weighted linear regression based on equation zM (t, p) =

r0 y0,0√
r02+8pt

in order to estimate the diffusion coefficient p. They calculated neither the FIM nor the standard

error of the parameter p estimate using (10).
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Let us assume that we have an equidistant spacing ∆s := sm−s1
m−1

such that the
sum can be approximated by an integral.5 Then we get the following expression for
the FIM (after some algebraic manipulation assisted by the Mathematica software)

MM ≈
m− 1

32(sm − s1)

[

ln

(

1 + 8sm
1 + 8s1

)

−
8(sm − s1)(1 + 12(s1 + sm) + 128s1sm)

(1 + 8sm)2(1 + 8s1)2

]

+

[

8s1
2

(1 + 8s1)3
+

8sm
2

(1 + 8sm)3

]

. (12)

The expression for MM is positive, increasing with the number of measurement
points, i.e. with T = t1 + (m− 1)∆t (for fixed ∆t and t1), and represents the lower
bound for the FIM as a scalar quantity (when a scalar p is estimated).6

3.2. Initial boundary value problem for PDE (9) and the FIM

As the above approach has several limitations, e.g. cell geometry restriction
(infinite domain is required), bleach profile must be gaussian-like, etc., we propose
to model the diffusion process by the Fick diffusion equation with realistic initial and
boundary conditions instead. Then the parameter estimation problem is formulated
as an ordinary least squares problem (4) resulting in the estimate p̂PDE. This problem
is treated elsewhere [3, 5, 6]. Here, we present the uncertainty assessment based on
the numerical evaluation of the FIM (implemented in the CA-FRAP). For each time
instant tj we denote pj = p̂PDE. The CA-FRAP solves the inverse problem (9) and
takes the simulated output y(xi, tj , pj), i = 1, . . . , n. Then, according to (5), we
obtain the FIM (diagonal in this case) using central differences as

M j
PDE =

n
∑

i=1

[

∂y(xi, tj, p)

∂p
|p=pj

]2

≈
n

∑

i=1

[

y(xi, tj , pj + ε)− y(xi, tj , pj − ε)

2ε

]2

(13)

where ε is a small positive number. The corresponding quantity MPDE for the
estimation of an overall p̂PDE is the sum

∑m
j=1M

j
PDE, cf. (5).

3.3. Numerical evaluation and comparison of the FIM for both method

We have performed several computations of the FIM for both above mentioned
approaches. For a particular case y0,0 = r0 = p = 1 and the time step between
m = 10 measurements equal to 0.1, the evaluation of (12) is straightforward and
gives MM ≈ 0.296 for s1 = 0.1 and sm = 1. The evaluation of MPDE is more compli-
cated. In order to compare both method, the output y(xi, tj, pj) were computed for
the same parameter settings as before by solving the forward problem (9), showing
the correspondence with (11), indeed. The numerical evaluation of (13) gives then
MPDE ≈ 0.363. We see that the PDE based method, which uses more spatial points
at each time level, gives a lower standard error of the estimated parameter p.

5The quantities corresponding to the first t1 and final T measurement time are s1 = pt1/r
2
0 and

sm = pT/r20, t1 < T, respectively.
6The one-point Moullineaux method is the simplest method. Other methods, see e.g. [6] for

review, use more data points, thus add more (positive) terms to the FIM.
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4. Conclusion

We present two methods for the estimation of the fluorescent compounds mobil-
ity from the spatio-temporal FRAP measurement. The first and simplest method is
based on the curve fitting to a closed formula and needs some unrealistic or hard-to-
accomplish conditions. The second method is based on a numerical approximation of
the Fick diffusion PDE with either a scalar or time dependent diffusion coefficient p.
Both methods are implemented in our software CA-FRAP, which simultaneously
provides the parameter estimate (this is not discussed here, in this paper) and the
corresponding standard error (using (10)). This aims to promote the following idea
across the FRAP community. The bioprocesses are inherently stochastic, thus the
mathematical framework related to the model parameter identification should deter-
mine both a parameter mean value and a certain confidence interval, which depends
on the output noise and the corresponding sensitivity, cf. (10).
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Abstract

The scheme for the numerical solution of the incompressible Navier-Stokes equa-
tions coupled with the equation for temperature through the temperature dependent
viscosity and thermal conductivity coefficients is presented. It is applied, together
with the spectral element method, to the 2D calculations of flow around heated cylin-
der. High order polynomial approximation is combined with the decomposition of
whole computational domain to only a few elements. Resulting data are compared
with the experimental data.

1. Introduction

The viscosity and the thermal conductivity of water and air depend on the tem-
perature. As a consequence, a wake behind an obstacle in an isothermal setting differs
from the situation, when the body and the fluid temperatures do not coincide. The
experimental data, see [5], for the flow around the heated cylinder are available for
both water and air in the flow regimes exhibiting regular vortex shedding. The cited
experimental data are available for Reynolds numbers (Re = DV∞/ν∞) in the range
50 < Re < 170, when Re is related to the cylinder diameter D (V∞ is the upstream
velocity magnitude and ν∞ is the upstream value of the kinematic viscosity). The
conditions and flow parameters in the mentioned experiment were such, that the
compressibility of both water and air can be neglected. Therefore the fluid den-
sity (ρ) may be assumed to be a constant and the incompressible model will be used.
The system of equations describing the heated flow consists of the Navier-Stokes
equations (1) with the incompressible constraint (2)

∂~v

∂t
+ ~v · ∇~v = −∇p+∇ ·

[
ν
(
∇~v + (∇~v)T

)]
, (1)

∇ · ~v = 0 (2)
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and the convection-diffusion equation for temperature (T ):

ρcp

(
∂T

∂t
+ ~v · ∇T

)
= ∇ · (λ∇T ) , (3)

where in the system (1)-(3) ~v denotes the fluid velocity vector, p is the kinematic
pressure, λ the thermal conductivity and the constant cp is the specific heat at the
constant pressure. Due to the nature of the pressure in the incompressible models
the above system is complete without the equation of state, on the other hand
the variability of the material coefficients causes strong coupling of equations (1)
and (3). The thermal dependencies of ν and λ can be approximated by power
function obtained from a tabulated data as in [3]:

ν(T ) = ν∞(T/T∞)ων , (air: ων = 0.7774, water: ων = −7 ), (4)

λ(T ) = λ∞(T/T∞)ωλ , (air: ωλ = 0.85, water: ωλ = 0.71 ), (5)

where 1 ≤ (T/T∞) ≤ T̃ = (TW/T∞) (TW is the constant temperature of the cylinder
wall).

The system of equations (1)-(3) generally admits non-smooth or even discontinu-
ous solutions, but observations do not confirm any shocks in the mentioned range of
Re for the fluids in the state which coincides with description in [5]. This suggests
possible existence of a smoother solution. Therefore we will use the computational
method based on the assumption of smooth data and solution, as is the spectral
method (see e.g. [2]). This method converges with increasing (e.g. polynomial)
order of the expansion basis. If the method is applicable, its minimization of the
number of degrees of freedom and the convergence rate are superior to methods of
lower, fixed order, which converge by dividing the computational domain to smaller
parts. On the other hand, spectral methods are not always applicable. Already the
fact, that the cylinder is in our case represented as a circular hole inside the domain,
forces us to leave pure spectral method and use the spectral element method, which
combines the geometrical flexibility of the finite element method with the approach
of the spectral method. This leads us to use of minimal number of elements and ap-
plication of very high order expansion basis. However, the class of equations where
the high orders are advantageous for numerical computation is limited and this fact
must be taken into account in design of the numerical scheme.

2. Numerical scheme

The numerical scheme for the system (1)–(3) was developed on the base of the
splitting scheme for the Navier-Stokes equations with a variable viscosity ([1]), where
the temperature dependent viscosity was decomposed to the sum of the constant ν∞
and the variable part νs: ν(T (~x, t)) = ν∞ + νs(~x, t). Denoting by “ ˆ ” and “ ˜ ”
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intermediate fields, by superscript the values of the variables in the n-th time level
and by ∆t the time step, we arrive to the first order scheme in time (see [4]):

~̂v − ~vn

∆t
= −(~vn · ∇)~vn +∇ · [νns (∇~vn +∇T~vn)] , (6)

~̃v − ~̂v
∆t

= −∇pn+1 ⇒︸︷︷︸
∇·~̃v=0

∇2pn+1 = ∇ ·

(
~̂v

∆t

)
, (7)

~vn+1 − ~̃v
∆t

= ν∞∇ · ∇~vn+1 . (8)

The key role plays the high order pressure boundary condition (HOPBC), which
is asserted on the boundaries, where the Dirichlet condition for velocity is prescribed:

∂pn+1

∂~n
= ~n ·

[
−(~vn · ∇)(~vn) +∇ ·

(
νn∇~vn + νn(∇~vn)T

)]
. (9)

Temperature dependence of the thermal conductivity is needed to keep the cor-
rect Prandtl number (Pr = νρcp/λ). The scheme for the temperature equation
was derived again by the operator splitting combined with the splitting of λ to the
constant λ∞ and the variable part λs, i.e. λ(T (~x, t)) = λ∞ + λs(~x, t).

The operator splitting then allows the implicit treatment of the diffusion operator
with the constant coefficient (λ∞) and the explicit treatment of the part with the
variable conductivity (λs). The first order scheme in time for temperature reads:

T̂ − T n

∆t
= −(~vn · ∇)T n − 1

ρcp
∇ · (λns∇T n) . (10)

As in (7) and (8) the spectral element method is applicable to the implicit step
of the scheme for temperature:

λ∞
ρcp
∇2T n+1 − T n+1

∆t
= − T̂

∆t
. (11)

The whole scheme (6)–(11) was implemented on the base of the modified Nek-
tar++ library of version 3.3.0 and the deeply modified incompressible Navier-Stokes
solver provided with the same library.

3. Mesh and parameters of the computation

The model assumed the flow in an open channel, which is not significantly in-
fluenced by a tank walls (in experiment) or Dirichlet boundary conditions on outer
boundaries (in computation). Therefore the dimensions of the computational do-
main must be large enough. The cylinder diameter D = 1 was chosen for simplicity
and then the spatial dimensions of the computational domain were: 20D upstream,
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Figure 1: The computational mesh consisting of 9 elements with description of the
boundary conditions (HOPBC is given by eq. (9)). The curve of the cylinder wall
was given by 10th order polynomial for each of the adjacent elements.

60D downstream and 20D above and under the cylinder. We divided the compu-
tational domain to small number of elements (NEL = 9) and used the rich ex-
pansion basis, having polynomial orders up to p = 49 in each coordinate variable
(2500 DOFs per element). The no slip condition and value of relative temperature T̃
was prescribed at the cylinder wall. Figure 1 shows the boundary conditions and the
computational mesh with all its elements. The chosen values of the inlet boundary
conditions imply ν∞ = 1/Re and λ∞/(ρcp) = 1/(RePr), so we can set Re and Pr
as independent, dimensionless parameters and avoid the explicit specification of the
constants ρ and cp. The initial conditions for both velocity and temperature were
constants equal to the values on the inflow boundary. The final quantity for the
comparison with the experimental results was the Strouhal number St = fD/V∞
(f denotes here the frequency of the vortex shedding). The effects of the heating as
a relation of St, Re and Pr numbers was studied also theoretically, see the empirical
formula derived in [3], which shall also be used for the comparison with the results
of the computation.

4. Results

The value of the Strouhal number can be determined from the temporal oscila-
tions of the approximative values of the forces acting on the cylinder. These forces
are often denoted as lift and drag force. As the flow develops to the von Kármán
vortex street, the oscillations tend to stable frequency. The stabilized periodicity
was recognized in the data and the averaged frequency through multiple periods
was computed (see Figure 3). Since the flow develops slowly from the constant
initial conditions, a long time computation was needed (about 300000 time steps
∆t = 0.001, depending on the Reynolds number).
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Figure 2: The resulting dependence of
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Figure 3: Plot of the lift coefficient CL
for Re = 123.2, TW/T∞ = 1.5 in the flow
of air. Rings indicate the extremes taken
for computation of the Strouhal number.

The resulting graphs of St−Re dependencies for both air and water, for various
cylinder temperatures, is shown in Fig. 2 and Fig. 4. The continuous curve is given
by the empirically obtained formula, see [3].

5. Conclusion

The presented results demonstrate applicability of the computational scheme
(6)–(11) introduced in combination with high order spatial approximation. Obtained
St− Re dependencies show qualitatively good agreement with the experimental re-
sults ([5, 3]) across various cylinder temperatures. Observed shift of the data is
mostly caused by insufficient expansion basis, since the expansion coefficients of the
highest orders were converged only to the values around 0.01. This setting of the
expansion basis was chosen due to high memory demands of the matrix system of
reference computations, since the work was performed on single CPU.

The increase/decrease of the Strouhal number caused by heating is smaller than
predictions of both the experiment and the empirical formula. On the other hand,
in case of water flow, the differences of the experiment from the empirical formula
are on the same level as the error of the computation.

The results are well comparable with standard approaches using hundreds of
thousands low order elements. The main advantage of the spectral approach stays
in the significant reduction of number of DOFs and possible reaching of exponen-
tial error decay. Achievement of more accurate solutions will be the goal of future
computations.
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[3] Marš́ık, F., Trávńıček, Z., Yen, R., Tu, W., and Wang, A.: Sr-Re-Pr relationship
for a heated/cooled cylinder in laminar cross flow. In: Proceedings of CHT-08
ICHMT International Symposium on Advances in Computational Heat Transfer,
2008.
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[5] Vı́t, T., Ren, M., Trávńıček, Z., Marš́ık, F., and Rindt, C.: The influence of
temperature gradient on the Strouhal–Reynolds number relationship for water
and air. Experimental Thermal and Fluid Science 31 (2007), 751–760.

174



Programs and Algorithms of Numerical Matematics 17
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Abstract

The numerical solution of granular dynamics problems with Coulomb friction leads
to the problem of minimizing a convex quadratic function with semidefinite Hessian
subject to a separable conical constraints. In this paper, we are interested in the
numerical solution of this problem. We suggest a modification of an active-set optimal
quadratic programming algorithm. The number of projection steps is decreased by
using a projected Barzilai-Borwein method. In the numerical experiment, we compare
our algorithm with Accelerated Projected Gradient method and Spectral Projected
Gradient method on the solution of a particle dynamics problem with hundreds of
spherical bodies and static obstacles.

1. Time-stepping scheme and formulation of optimization problem

In our simulation, we consider a system of nb ∈ N particles in vector space
{(x, y, z) ∈ R

3}. The position of each particle in time t is defined by the vector

of generalized position q
(t)
i ∈ R

7, which consists of the position of the centre of
gravity [rx, ry, rz]

T and the unit quaternion of rotation [e0, e1, e2, e3]
T . The velocity

of the body is defined by the vector of generalized velocities v
(t)
i ∈ R

6, it includes
the velocity corresponding to the position of the centre of the body and angular
velocities represented in Euler angles.

We use the well-known time-stepping scheme, see Heyn [9] or Heyn et al. [10]

q(t+h) = q(t) + hQv(t) ,
v(t+h) = v(t) + hM−1(F ext + F C) ,

(1)

where h is a time step, Q denotes the matrix of linear mapping between the derivative
of the position vector and the vector of velocities, M is a generalized mass matrix,
F C is a vector of forces induced by contact constraints, and F ext is a vector of external
forces. In our simulation, the vector of external forces represents the gravity force
applied to each body.
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Let us denote the number of contacts by m ∈ N∪{0}. The contact force applied
to each body can be separated into the sum of the normal force and the tangential
force, i.e.,

F C = F n + F T = γnn+ γuu+ γww ,

where γn > 0 is the size of the normal component of the friction force, and γu, γw ∈ R

are the sizes of the tangential components of the friction force. Here, {n,u,w} is
an orthonormal basis of the tangential space at the contact point. The relation
between the components of γj := [γn, γu, γw] for j-th contact (j = 1, . . . , m) can be
described by the Coulomb friction model. The unknown vector of all components
in all contacts can be denoted by γ := [γ1, . . . ,γm] ∈ R

3m and can be found by
solving the problem of minimizing a convex quadratic function subject to separable
conical constraints (see Heyn [9]). The proof of equivalency is based on the maximum
dissipation principle and duality.

The optimization problem is given by

find γ := argmin
x∈Ω

f(x), f(x) :=
1

2
xTAx− bTx , (2)

where A ∈ R
3m,3m is a symmetric positive semidefinite matrix, b ∈ R

3m, and Ω ⊂ R
3m

is a non-empty convex feasible set defined by separable conical constraints

Ω := {x ∈ R
3m : hj(x2j−2, x2j−1, x2j) ≤ 0, j = 1, . . . , m} ,

where hj : R
3 → R are conical constraints functions

hj(x, y, z) :=
√

y2 + z2 − µjx, j = 1, . . . , m ,

and µj ≥ 0 are given friction coefficients that define the interior angles of cones. Let
us notice, that if we consider the problem without friction, then µj = 0, and the
optimization problem (2) becomes a quadratic programming problem with bound
constraints.

For the sake of simplicity we denote the triplet of compoments of x ∈ R
n con-

strained by j-th constraint function using the notation of index sets

Ij := {3j − 2, 3j − 1, 3j},

m
⋃

j=1

Ij = {1, . . . , n}, j = 1, . . . , m .

2. Active-set method

For numerical solution of the problem (2), we are using the variant of Mod-
ified Proportioning with Gradient Projection (MPGP), see Dostál [5] and Dostál
et al. [7, 4], or Posṕı̌sil [12]. This active-set algorithm is based on the decomposition
of the set of all constraint indices M := {1, . . . , m} into two disjoint subsets based
on the values of constraint functions

F(x) := {j ∈ M : hj(xIj) < 0} ,
A(x) := {j ∈ M : hj(xIj) = 0} .
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The gradient of the objective function g := ∇f(x) = Ax − b ∈ R
n can be used to

define the free and the chopped gradient with components

ϕIj
(x) = gIj

for j ∈ F(x), ϕIj
(x) = 0 for j ∈ A(x),

βIj
(x) = 0 for j ∈ F(x), βIj

(x) = gIj
−min{nT

j (xIj )gIj
, 0}nj(xIj )

for j ∈ A(x),

where nj(x, y, z) is the unit outer normal of j-th constraint hj(x, y, z). We consider
a problem with conical constraints, so outer normal is given by

nj(x, y, z) :=

{

[−1, 0, 0]T if x = y = z = 0 ,
[

−µj , y/
√

y2 + z2, z/
√

y2 + z2
]T

elsewhere.

Algorithm 1: Modified Proportioning with Barzilai-Borwein Gradient Pro-

jection (MPGPS-BB).

Choose x0 ∈ Ω
for k = 0, 1, 2, . . . (while a stopping criterion is not achieved)

if ‖ϕ(xk)‖ ≥ ‖β(xk)‖ (proportioning condition)

Control the solvability
if min{αf , αcg} = ∞, then the problem has no solution.

CG step or CG halfstep
make one CG step to solve problem on free set

if this step means leaving Ω, do only a half-step and restart CG

else

Gradient projection step.
make projected Barzilai-Borwein step

restart CG on free set

endif

k := k + 1

endfor

Our algorithm is based on using the free and chopped gradient to minimize the
objective function on the free set and afterwards on the active set. The switching
between these processes is realized by the proportioning condition. The implementa-
tion details of each step are the same as in the original Modified Proportioning with
Gradient Projections algorithm (MPGP) in Dostál [5], Dostál et al. [7, 4]. Neverthe-
less, MPGP was developed to solve the problems with a symmetric positive definite
Hessian matrix. The recent generalization to the problems with symmetric posi-
tive semidefinite Hessian suggests only one difference from the original algorithm,
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specifically a test of the problem solvability, see Algorithm 1. The coefficient αf

is the maximal feasible step-size and αcg is a coefficient of the conjugate gradient
computed from the free gradient. If both of these coefficient are equal to infinity,
then the problem has no solution. The theory will be published in [6].

To solve a problem with separable conical constraints, we suggest to use the
projected version of Barzilai-Borwein method [2] instead of the projected gradient
method with constant step-length as in original MPGP algorithm. Constant step-
length always induces the descend of cost function, as it was shown by Dostál and
Schöberl [8]. However, the numerical experiments show that using non-monotone
algorithms, such as projected Barzilai-Borwein (PBB) given by

xk+1 = PΩ(x
k − αBB

k ∇f(xk)), αBB
k =

sTk sk

sTkAsk
, sk = xk − xk−1,

usually evokes the decrease of the projection steps number. This modification was
inspirated by the Spectral Projected Gradient method (SPG), which uses the similar
type of steps, see Birgin et al. [3]. The idea of the combination of MPGP and
PBB was firstly presented by Posṕı̌sil [12] and tested on the problem with separable
quadratic constraints.

The main shortage of the presented MPGPS-BB algorithm is the absence of the
proof of convergence. The PBB method is non-monotone and hardly analyzable.
Therefore, the SPG method is using an additional line-search method to control the
descend of the objective function, i.e. the global convergence. In our algorithm, we
tried to omit this line-search. Our idea is well-founded by the numerical experiment
presented in the final section of this paper.

As a stopping criterion in our algorithm, we are using the norm of the scaled

projected gradient defined by

g̃P
α (x) :=

1

α
(x− PΩ(x− α∇f(x))) .

The equivalency of this gradient and the fulfilment of Karush-Kuhn-Tucker optimal-
ity conditions for problems with feasible sets with strong curvature was discussed
and proved by Bouchala et al. [4].

3. Numerical experiments

In this section, we present the numerical results showing the efficiency of our
algorithm on the simulation of 339 spherical particles with friction. In our bench-
mark, the particles are scattered into simple box represented by six walls. The initial
position of the partices and final position can be found in Fig. 1, where we depicted
only the partices and the bottom side of the static box. The material of the bodies is
represented by density ρ = 730 kg.m−3 and friction parameter µ = 0.3. The stepsize
of the time-stepping scheme is h = 6.25 · 10−4 s.
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Figure 1: State of testing benchmark at t = 0s (left) and t = 5s (right).

t contacts n active MPGPS-BB SPG APGD

1s 738 2214 562 (76%) 274 (7.6s) 2360 (37.8s) 754 (9.4s)
2s 702 2106 574 (82%) 137 (3.4s) 449 (6.0s) 346 (2.9s)
3s 730 2190 558 (76%) 137 (3.7s) 449 (6.0s) 346 (4.1s)
4s 814 2442 640 (79%) 338 (9.9s) 2931 (56.2s) 1345 (18.9s)
5s 818 2454 652 (80%) 425 (12.3s) 4176 (88.0s) 1742 (25.6s)

Table 1: The optimization problems at selected times of the simulation; number of
contacts, dimension of the problem, the number of iterations and computing time of
the algorithms.

We compare our algorithm with SPG and the Accelerated Projected Gradient De-
scend method (APGD [11]). In SPG, because the minimum of the quadratic function
in a given direction is known, we use the Cauchy step-size instead of using an ad-
ditional Grippo-Lampariello-Lucidi line-search. All algorithms were implemented in
the Matlab environment. For contact detection, we are using our own implemen-
tation of the Moving Bounding-Box algorithm [13]. The number of iterations at
selected times of the simulation can be found in Table 1. We demand the relative
stopping tolerance ‖g̃P

α (x)‖ < ǫ‖b‖, ǫ = 10−6.

4. Conclusions

In our paper, we proposed the modification of our active-set algorithm for the
solution of optimization problem in particle dynamics with friction. Our numeri-
cal experiment shows the efficiency of the modifications. Unfortunately, the basic
disadvantage of using the projected Barzilai-Borwein method is the absence of a con-
vergence proof as well as of an estimate of the speed of convergence.
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[8] Dostál, Z., and Schöberl, J.: Minimizing quadratic functions subject to bound
constraints with the rate of convergence and finite termination. Comput. Optim.
Appl. 30 (2005), 23–44.

[9] Heyn, T.: On the modeling, simulation, and visualization of many-body dynam-

ics problems with friction and contact. Ph.D. Thesis, University of Wisconsin-
Madison, 2013.

[10] Heyn, T., Anitescu, M., Tasora, A., and Negrut, D.: Using Krylov subspace and
spectral methods for solving complementarity problems in many-body contact
dynamics simulation. Internat. J. Numer. Methods Engrg. 95 (2012), 541–561.

[11] Nesterov, Y.: Introductory lectures on convex optimization: a basic course. Vol-
ume 87, Springer, 2003.
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Abstract

Paper deals with hydro-thermal performance of concrete exposed to a fire. It is
introduced mathematical model, numerical approach and some results provided by
the model.

1. Introduction

Behavior of concrete exposed to the high temperature plays crucial role in the
assessment of the reliability of concrete structure. There exist several mathematical
models that aim to predict and simulate such a behavior. One of the first models
was developed by Bažant and Thonguthai. Its improved version is described in [3] or
in [4]. Another model was formulated by Gawin et al. [6] or by Dwaikat and Kodur
in [5]. These models differ in its complexity, dimension, number of variables and
equations. Their common characteristic is that models contain nonlinear differential
equations and lot of empirical data.

In the paper we introduced mathematical model which is slightly revised and
modified approach of [4]. The model belongs to the simpler ones because the only one
phase (free water) is assumed. Surprisingly some phenomena observed in experiments
can by explained by the analysis of the model.

2. Physical phenomena

Let us describe physical processes, which occur in concrete during fire. Concrete
is non-combustible material with low thermal conductivity. Although concrete does
not contribute to fire load of the structures significant changes occur in its structure
during a fire exposure. Besides reduction of mechanical, deformation and material
properties also chemical composition of concrete is varied during heating [3].

Concrete, as a porous material, contains a large amount of pores, which can be
filled fully (saturated concrete) or just partially with water. The water occurred
in the pores is evaporable water and starts to evaporate at early beginning of the
fire. The first changes of concrete structure arise at 105 ◦C as stated in [8], when
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chemically bounded water is released from cement gel to the pores. Some small
micro-cracks start to appear as the capillary porosity arises. The peak of the de-
hydration process is reached around 270 ◦C. The color of concrete is changed and
a slight decrease of strength, modulus of elasticity and changes in material proper-
ties like thermal conductivity can be noted. Temperature of 300 ◦C is the extreme
temperature beside which the concrete structure is irreversibly damaged [7]. In range
of 400–600 ◦C calcium hydroxide decomposes into calcium oxide plus water (rise of
amount of free water) and transition of α and β quartz, accompanied by increase in
its volume, induces another creation of severe cracks in concrete.

Simultaneously with a change of temperature can be investigated also the change
of mass of free water (mostly vapor) and distributions of pore pressure. The pore
pressure is one of the main reasons of concrete spalling, which happened at the begin-
ning of heating (10–30 minutes) and is accidental. Small or grater areas of concrete
cover can be broken and cross section of member is reduced then. Furthermore in
most cases the reinforcement is exposed directly to the fire and the member is heated
faster, which can lead to loss of loadbearing capacity.

3. Mathematical model

The aim is to model behavior described above. We consider two-dimensional
model. Let Ω be a domain representing a concrete skeleton with the points x=(x1, x2).
Let us denote by Γ the boundary of domain Ω. The boundary consists of two parts:
ΓR, which represents part exposed to the fire and ΓN , which is exposed to the atmo-
sphere. It is supposed that ΓR and ΓN are non-intersecting sets and ΓR ∪ ΓN = Γ.
By n = (n1, n2) is denoted outer unite normal of Ω.

In the model, there are three unknowns: w(x, t) denotes amount of free water,
P (x, t) is pore pressure and T (x, t) is temperature in the point x and time t.

Mass balance equation of free water takes into account diffusive flow (L 1.2)
and variation (L 1.1) of free water. Source of the free water is water dehydrated from
the skeleton (R 1.1). The equation is:

∂w

∂t︸︷︷︸
L 1.1

+∇ · J︸ ︷︷ ︸
L 2.1

=
∂wdeh

∂t︸ ︷︷ ︸
R 1.1

in Ω× (0,∞) , (1)

where J is flow of free water. Function wdeh = wdeh (T ) gives mass of dehydrated
water. It is empirical function, we adopted the one specified in [5].

Enthalpy balance equation considers conductive (L 2.2) and convective (L 2.3)
heat flows. Source terms in the equation describes effects caused by dehydration of
skeleton (R 2.1) and evaporation of free water (R 2.2). Then, the equation is:

ρsCs
∂T

∂t︸ ︷︷ ︸
L 2.1

+∇ · q︸ ︷︷ ︸
L 2.2

−Cw∇T · J︸ ︷︷ ︸
L 2.3

= −∆Hdeh
∂wdeh

∂t︸ ︷︷ ︸
R 2.1

+ ∆Hevap
∂w

∂t︸ ︷︷ ︸
R 2.2

in Ω× (0,∞) , (2)
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where q means heat flux, ρs = ρs(T ) density of concrete , Cs = Cs(T ) specific heat
of concrete, Cw specific heat of water, ∆Hdeh enthalpy of dehydration, ∆Hevap =
∆Hevap(T ) enthalpy of evaporation.

State equation Now, we have three unknowns and only two equations, (1) and (2).
For that reason we add state equation

w = Φ(P, T ), (3)

where Φ is empirical function described in [10], p. 530.

Constitutive relationship: According to [3], the heat and moisture flux can be
considered in the form of Fourier’s respectively Darcy’s law, i. e.:

J = −K
g
∇P and q = −λ∇T,

where K = K(T, P ) denotes permeability of concrete and λ = λ(T ) thermal conduc-
tivity and g gravitational acceleration (included for the reasons of dimensionality).

Boundary conditions: The model is completed with boundary conditions. They
are of the Robin type:

−J · n = βN(P − P∞) on ΓN × (0,∞), (4)

−J · n = βR(P − P∞) on ΓR × (0,∞), (5)

−q · n = αN(T − T∞) on ΓN × (0,∞), (6)

−q · n = αR(T − Ten) + eσ(T 4 − T 4
en) on ΓR × (0,∞), (7)

where αR, αN are heat transfer coefficients for boundary exposed to the high tem-
perature and to the atmosphere , βR, βN denote coefficients of moisture transfer
through the boundary ΓR resp. ΓN , e emissivity of concrete and σ Stefan- Boltz-
mann constant. P∞ resp. T∞ denotes outer pressure resp. temperature and finally
Ten = Ten(t) gives temperature caused by fire.

Initial conditions: To describe environment for t = 0, we prescribe initial condi-
tions

P (x, 0) = P0 for x ∈ Ω, (8)

T (x, 0) = T0 for x ∈ Ω, (9)

where P0 and T0 are pressure and temperature in t = 0.
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4. Numerical methods

Equations (1)–(3) together with boundary conditions (4)–(7) and with initial
conditions (8), (9) form mathematical model. This model is implemented in Matlab,
where we use following approach.

For time discretization we use Rothe method. It leads to a system of nonlinear
partial differential equations. To solve this we used finite element method in each
time step. Basis and test functions are bilinear polynomials as we choose, for spatial
discretization, square conforming uniform mesh. Integrals appearing in finite element
method are computed by Gaussian quadrature. Finite element method provides
system of nonlinear equations, which is solved by Newton’s method. Stopping criteria
is residual tolerance set to the value 10−8.

5. Example

Let us present results of our model problem. The set Ω is a rectangle 50 mm ×
100 mm. ΓR is left and upper side of the Ω and so ΓR is right and lower side.

The data of the model were set as follows: Cw = 4180 J kg−1 ◦C−1, ∆Hdeh =
2.44 · 10−6 J kg−1, g = 9.81 m s−2, αR = 25 W m−2 ◦C−1, αN = 4 W m−2 ◦C−1,
βR = 20 · 10−9 s m−1, βN = 10 · 10−9 s m−1, e = 0.7, P∞ = P0 = 1330 Pa,
T∞ = T0 = 25 ◦C.

For thermal conductivity of concrete λ holds, see [2], λlow ≤ λ ≤ λup, where

λlow(T ) = 2−0.2451
T

100
+0.0107

(
T

100

)2

, λup(T ) = 1.36−0.136
T

100
+0.0057

(
T

100

)2

.

In the model was set λ =
λlow+λup

2
.

Following [2], density of concrete ρs and specific heat of concrete Cs(T ) is:

ρs(T ) =


2500 for 20 ◦C ≤ T ≤ 115 ◦C,

2500
(
1− 0.02 T−115

85

)
for 115 ◦C ≤ T ≤ 200 ◦C,

2500
(
0.98− 0.03 T−200

200

)
for 200 ◦C ≤ T ≤ 400 ◦C,

2500
(
0.95− 0.07 T−400

800

)
for 400 ◦C ≤ T ≤ 1200 ◦C ,

and

Cs(T ) =


900 for 20 ◦C ≤ T ≤ 100 ◦C,

800 + T for 100 ◦C ≤ T ≤ 200 ◦C,

900 + T
2

for 200 ◦C ≤ T ≤ 400 ◦C,

1100 for 400 ◦C ≤ T ≤ 1200 ◦C .

Enthalpy of evaporation is given in [9],

∆Hevap(T ) = 2.672 · 105 (374.15− T )0.38 for T ≤ 400 ◦C.
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Figure 1: Logarithmic plot of permeability K (T, h(T, P )) of concrete

As Ten, we used ISO curve given by [1], Ten(t) = T0 + 345 log(480 t+ 1).

Permeability K(T, P ) can be found in [3] and is given by relationship:

K(T, h) =



10−12

(
α + 1−α

1+( 1−h
0.25 )

4

)
e2 700 ((T0+273.15)−1−(T+273.15)−1) for T ≤ 95 ◦C,

h ≤ 1,

10−12 e2 700 ((T0+273.15)−1−(T+273.15)−1) for T ≤ 95 ◦C,
h > 1,

10−12 e2 700 ((T0+273.15)−1−(368.15)−1) e
T−95

0.881+0.214(T−95) for T > 95 ◦C,

where several auxiliary functions are used. We define α(T ) and h(T, P ) as

α(T ) =

(
1 +

19 (95− T )

70

)−1

, h(T, P ) =
P

Ps
=

P

e23.5771− 4 042.9
(T+273.15)−37.58

,

where Ps is a saturated vapour pressure. Plot of the permeability is on the Figure 1.

Results of the model are on the Fig. 2. Time step is set to 5 sec., number of mesh
elements is 20× 40.

6. Conclusion

Development of reasonable models for the prediction of behavior of concrete struc-
tures is strongly required by the applied research in civil engineering. Practical val-
idation of the models suffers from the lack of data from experiments. Sufficiently
general formulation of the problem should be a motivation for further research.
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Figure 2: Time development of pressure P [kPa], temperature T [◦C] and moisture
[kg m−3]. Time step: 5 sek, number of spatial elements: 20× 40.
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Abstract

In this contribution we add a unilateral term to the Thomas model and investigate
the resulting Turing patterns. We show that the unilateral term yields nonsymmetric
and irregular patterns. This contrasts with the approximately symmetric and regular
patterns of the classical Thomas model. In addition, the unilateral term yields Turing
patterns even for smaller ratio of diffusion constants. These conclusions accord with
the recent findings about the influence of the unilateral term in a model for mammalian
coat patterns [3]. This indicates that the observed effects of the unilateral term are
general and apply to a variety of systems.

1. Introduction

Systems of reaction-diffusion equations are widely used to model various phenom-
ena in biology and chemistry. Spatio-temporal ecological models (e.g. predator-pray
models), chemical kinetics and tumour growth can serve as examples. In addition,
reaction-diffusion systems have successfully explained the spontaneous emergence of
skin and coat patters in mammals, fish, gasteropods and others. One of the well-
established reaction-diffusion models is the Thomas reaction kinetics model [9]. It
has originally been used for modelling of chemical reactions involving oxygen and
uric acid. However, Murray in [7] showed that this model can successfully model the
formation of coat patterns in mammals.

The mechanism responsible for the creation of spatial patterns is known as the
Turing diffusion driven instability [10]. This instability occurs if a spatially homo-
geneous stationary solution is stable with respect to small spatially homogeneous
perturbations and unstable with respect to small spatially heterogeneous perturba-
tions. A new stable and spatially heterogeneous steady state solution can evolve in
this case and it is called a pattern. Turing instability is well known and necessary
conditions for its emergence are derived, e.g. in [7], under the condition that the
corresponding nonlinear terms are smooth.

The main idea of this paper is to consider the Thomas model appended by a non-
smooth unilateral term. Reaction-diffusion systems with unilateral terms, mainly
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in the form of variational inequalities, have been studied in [1, 4, 5] and several
interesting and surprising properties have been reported. For example, there are
theoretical studies showing that certain unilateral systems can produce Turing pat-
terns for virtually arbitrary ratio of diffusion coefficients. This is surprising, because
the corresponding classical reaction-diffusion system (without any unilateral term)
produces Turing patterns only if this ratio is sufficiently away from one.

This motivates us to study the system of reaction-diffusion equations for the
evolution of concentrations u = u(t, x, y) and v = v(t, x, y) of two morphogens in the
following form:

∂u

∂t
= ∆u+ γ(a− u− h(u, v)) in (0, T )× Ω, (1)

∂v

∂t
= d∆v + γ

(
αb− αv − h(u, v) + τ(v − v̂)−

)
in (0, T )× Ω (2)

where
h(u, v) =

ρuv

1 + u+Ku2
.

The model parameters a, b, d, α, γ, τ,K, and ρ are constants, v̂ stands for the second
component of the ground state, which is defined below, T denotes the final time,
Ω ⊂ R2 is a domain, and τ(v− v̂)− is the unilateral term which is multiplied by γ in
order to make it proportional to the size of the domain Ω in the same manner as the
other nonlinear terms. Notice that the negative part is defined as w− = max(0,−w).
For τ = 0, system (1)–(2) coincides with the original Thomas model. However, in
this paper we mainly consider τ > 0 and study the effect of the unilateral term
τ(v − v̂)− on the emerging patterns.

We will couple the model (1)–(2) with zero flux boundary condition

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω, (3)

where n stands for the outward unit normal vector to the boundary ∂Ω. The spatially
homogeneous steady state solution mentioned above is known as the ground state
and it is defined as a pair û, v̂ ∈ R, which solves the nonlinear system

a− û− h(û, v̂) = 0 and αb− αv̂ − h(û, v̂) = 0.

Clearly, the constant functions u(t, x, y) = û and v(t, x, y) = v̂ form a stationary
solution to system (1)–(2) with boundary conditions (3). The component v̂ of the
ground state is used in (2) to define the unilateral term. Notice that it is nonsmooth
exactly at the point v̂. The biological motivation for the nonsmooth unilateral term
in (2) and its further properties are discussed in the next section.

2. Unilateral terms

A general biological motivation and existing theoretical results for reaction-diffusion
systems with unilateral terms are thoroughly discussed in [3]. In this short contri-
bution, we only offer a short overview for the sake of completeness.
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System (1)–(2) for concentrations of two morphogens diffusing within a tissue is
biologically plausible, because we can expect receptors in the cell membrane that
detect the local concentration v of the second morphogen. The cell then reacts
in such a way that if the concentration v drops below the threshold value v̂, the
cell will commence to produce the second morphogen. Similarly, as soon as the
concentration v reaches the threshold v̂ the cell stops to produce it.

This mechanism is modelled in equation (2) by the unilateral term τ(v − v̂)−.
When v is smaller than the threshold v̂, the term (v − v̂)− becomes positive and
the concentration v starts to increase with the rate γτ |v − v̂|. In other words, the
unilateral source term starts to be active. When the concentration v decreases to the
level of the threshold v̂, the unilateral term τ(v − v̂)− vanishes and ceases to have
any effect in the system.

From both the biological and mathematical point of view it is natural to set the
threshold to the value v̂ of the ground state. Naturally, the parameter τ governs the
intensity of the unilateral term.

If τ = 0 then all nonlinear terms in system (1)–(2) are smooth and the standard
linear analysis, see e.g. [7], can be performed to derive the necessary conditions
for the Turing instability to occur. In case of system (1)–(2) this analysis restricts
the diffusion coefficient d to be sufficiently large, see below. However, recent re-
sults [1, 4, 5] surprisingly revealed that this condition on d can be relaxed if certain
unilateral terms or conditions are added to the system. This is an interesting feature
both mathematically and biologically. Especially, in the light of the common critique
of the Turing pattern formation mechanisms, that the diffusion constants of the two
morphogens should be similar, because both the morphogens are presumed to be of
a similar chemical nature.

The effects of the unilateral term on the resulting patterns have been studied in [3]
using a model for generating pigment patterns on coats of leopards and jaguars [2, 6].
Paper [3] concludes that the unilateral term leads to nonsymmetric and irregular
patterns and that the patterns appear even for ratios of diffusions violating the
condition from the linear analysis. In this contribution, we investigate the Thomas
model to see if we can obtain comparable results as in [3]. This would confirm that
the conclusions of [3] are more general and do not apply to one specific model only.

3. Numerical results

We solve system (1)–(2) numerically using own finite element solver based on
triangular meshes. The Matlab built-in adaptive time-stepping ODE solver ode15s

is used for the time integration. We use the following set of parameters:

a = 150, b = 100, α = 1.5, γ = 252, K = 0.05, ρ = 13. (4)

We vary the diffusion coefficient d between 22.5 and 27.5 and the intensity of the
unilateral source τ between 0 and 2. The domain is a square Ω = (−2, 2)2 and the
computation is terminated at the final time T = 4 as the solution of the system
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is already close to the steady state at this point. The ground state for parameter
values (4) is approximately (û, v̂) = (37.7380, 25.1588). The initial condition is
chosen as a small random noise around this ground state. The same initial condition
is used for all presented results.

Using these parameter values, we perform a numerical experiment to study the
effects of the intensity of the unilateral source τ and the diffusion coefficient d on the
resulting Turing patterns. Since both components u and v provide complementary
results, we present plots based on v only. Figure 1 shows the resulting Turing patterns
for various values of parameters τ and d.

First, we observe the qualitative change of the patterns with growing τ , see the
first column in Figure 1. For τ = 0 the pattern consists of close-to-circular spots with
similar sizes. These spots are almost symmetrically placed. As the intensity of the
unilateral term τ grows, the spots become irregular and gradually more and more
elongated. The larger spots seem to be fused from several smaller ones. Starting
from the value τ = 1 the pattern is already substantially nonsymmetric and it is
qualitatively distinct from the close to regular pattern for τ = 0.

Another outcome of the performed experiment is that the unilateral term enables
patterns even for d smaller than the usual linear theory [7] permits. Indeed, if τ = 0
system (1)–(2) contains no unilateral term, the remaining nonlinearities are smooth,
and the standard linear analysis of the Turing instability [7] yields the following
critical value [8] for the diffusion coefficient d:

dcrit =
detB − b12b21 + 2

√
−b12b21 detB

b11

≈ 27.027, (5)

where

B =

[
b11, b12

b21, b22

]
= −γ

[
1 + ∂h/∂u,−∂h/∂v
∂h/∂v, α + ∂h/∂v

]
(û, v̂) ≈

[
226.7,−1124.5
478.7,−1502.5

]
is the Jacobi matrix of system (1)–(2) evaluated at the ground state and the numerical
values correspond to (4). The original Thomas model (i.e. the case τ = 0) can exhibit
Turing instability only if d > dcrit.

We may verify this condition in the first row of Figure 1. The second and sub-
sequent columns of Figure 1 show that as the intensity of the unilateral source τ
grows, Turing patterns emerge even for the diffusion coefficient smaller than the
critical value (5). In general, this indicates that the additional unilateral term can
weaken the condition on the diffusions and enables the emergence of patterns for
diffusion coefficients of the two morphogens closer to each other.

4. Conclusions

This contribution evaluates the effect of the additional unilateral source term in
the Thomas reaction-diffusion system. We have observed that patters in systems
with sufficiently intensive unilateral term are less regular and symmetric compared
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Figure 1: Patterns for various values of the intensity of the unilateral source τ and
diffusion coefficient d

to patterns in systems with a weak or no unilateral term. Further, in comparison
with classical systems with no unilateral regulation, the unilateral term can enable
the emergence of Turing patterns even for those values of the diffusion coefficient d
which prevent the Turing instability in the classical systems.

These results accord with conclusions of a more detailed study [3], where a re-
action-diffusion model for coat patterns of leopard and jaguar [2, 6] is analysed.
Thus, the reported effects of the unilateral source term seem to be more general and
valid for more types of reaction-diffusion systems. Beside this, the observed effects
verify and illustrate theoretical findings of [4], where a unilateral regulation in terms
of variational inequalities is presented.

From the practical point of view, it has been suggested in [3] that the unilat-
eral source term can explain the irregular mutant colouration observed in certain
mammals, such as king cheetahs.

Reaction-diffusion systems have been studied for several decades, the correspond-
ing literature is wide and various perspectives are already covered. However, this
contribution as well as the paper [3] confirm that there are still aspects, such as the
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unilateral source terms that are interesting from both theoretical and practical point
of view and that deserve further investigations.

Acknowledgements

The research leading to these results has received funding from the People Pro-
gramme (Marie Curie Actions) of the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) under REA grant agreement no. 328008. Further, it has
been supported by the grant SVV-2014-260106 and by RVO 67985840. This support
is gratefully acknowledged.

References
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Abstract

A way of data approximation called smooth was introduced by Talmi and Gilat
in 1977. Such an approach employs a (possibly infinite) linear combination of smooth
basis functions with coefficients obtained as the unique solution of a minimization
problem. While the minimization guarantees the smoothness of the approximant and
its derivatives, the constraints represent the interpolating or smoothing conditions at
nodes. In the contribution, a special attention is paid to the periodic basis system
exp(−ikx). A 1D numerical example is presented.

1. Introduction

Measurements of the values of a continuous function of one or more independent
variables are performed in many branches of science and technology. The data cor-
respond to a finite number of measurement nodes but we need also its extension:
the values corresponding to other points in some domain. The way of smooth inter-
polation [3, 4] is to minimize the L2 norm of the interpolating function and that of
its chosen (possibly all) derivatives. This is a variational problem with constraints
represented by the interpolation conditions. An example of a smooth interpolation
is the well-known spline interpolation.

We are mostly interested in the case of a single independent variable in the
contribution. We generalize the approach of [4], and introduce the problem to be
solved and the tools necessary to this aim in Sec. 2. We also quote the general
existence theorem for smooth interpolation [3]. We are concerned with the use of
basis system exp(−ikx) of exponential functions of pure imaginary argument for 1D,
2D, and 3D smooth approximation problems in Sec. 3. In the conclusion, we show
and discuss results of numerical experiments to compare the classical interpolation
formulae and various kinds of the smooth approximation.
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2. Problem of interpolation. Smooth interpolation

Let us have a finite number N of (complex, in general) measured (sampled) values
f1, f2, . . . , fN ∈ C obtained at N mutually distinct nodes X1, X2, . . . , XN ∈ Rn.
Assume that fj = f(Xj) are measured values of some continuous function f . The
dimension n of the independent variable may be arbitrary. For the sake of simplicity
we put n = 1 except for Sec. 3 and assume that X1, X2, . . . , XN ∈ Ω, where either
Ω = [a, b] is a finite interval or Ω = (−∞,∞).

The problem of interpolation is construction of the interpolating function z ful-
filling the interpolation conditions

z(Xj) = f(Xj), j = 1, . . . , N. (1)

The problem of data interpolation does not have a unique solution. The property (1)
of the interpolating function is uniquely formulated by mathematical means but
there are also additional conditions on the subjective perception of the behavior of
the interpolating curve between nodes that can hardly be formalized.

An inner product space is introduced to take into account the additional con-
ditions in the problem of smooth interpolation [3], [4]. Let {Bl}∞l=0 be a sequence
of nonnegative numbers and let L be the smallest nonnegative integer such that
BL > 0 while Bl = 0 for l < L. Let W̃ be a linear vector space of complex functions
g continuous together with their derivatives of all orders on the interval Ω.

Put

(g, h)L =
∞∑
l=0

Bl

∫
Ω

g(l)(x)[h(l)(x)]∗ dx, |g|2L =
∞∑
l=0

Bl

∫
Ω

|g(l)(x)|2 dx, (2)

where ∗ denotes the complex conjugate.

If L = 0 (i.e. B0 > 0), g ∈ W̃ , and the value of |g|0 exists and is finite, then
(g, h)0 = (g, h) has the properties of inner product and the expression |g|0 = ‖g‖ is
norm in the normed space W0.

If L > 0 let PL−1 ⊂ W̃ be the subspace whose basis {ϕp} consists of monomials
ϕp(x) = xp−1, p = 1, . . . , L, and (ϕp, ϕq)L = 0 for p 6= q. Using (2), we construct the

quotient space W̃/PL−1 whose zero class is the subspace PL−1. We see that then (·, ·)L
and | · |L represent the inner product and norm in the normed space WL = W̃/PL−1.

For an arbitrary L ≥ 0, choose a basis system of functions {gk} ⊂ WL, k =
1, 2, . . . , that is complete and orthogonal (in the inner product of WL), (gk, gm)L = 0
for k 6= m, (gk, gk)L = |gk|2L > 0. If L > 0 then it is, moreover, (ϕp, gk)L = 0 for
p = 1, . . . , L, k = 1, 2, . . . . The set {ϕp} is empty for L = 0.

The problem of smooth interpolation consists in finding the coefficients Ak and ap
of the expression z(x) =

∑∞
k=1Akgk(x) +

∑L
p=1 apϕp(x) such that (1) holds and the

quantity |z|2L attains its minimum.
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Let the sum RL(x, y) =
∑∞

k=1 gk(x)g∗k(y)|gk|−2
L , called the generating function,

converges for all x, y ∈ Ω. Theorem 1 of [3] states how to obtain the smooth
interpolant z in the form

z(x) =
N∑
j=1

λjRL(x,Xj) +
L∑
p=1

apϕp(x), (3)

where the coefficients λj, j = 1, . . . , N , and ap, p = 1, . . . , L, are the unique solution
of a nonsingular system of N + L linear algebraic equations.

3. A choice of basis function system

Recall that we have put n = 1. Let the function f to be approximated be periodic
in [0, 2π]. We choose periodic exponential functions of pure imaginary argument for
the basis system {gk}. The following theorem shows important properties of the
system.

Theorem 1. Let there be an integer s ≥ L such that Bl = 0 for all l > s in WL.
The system of periodic exponential functions of pure imaginary argument

gk(x) = exp(−ikx), x ∈ [0, 2π], k = . . . ,−2,−1, 0, 1, 2, . . . , (4)

is then complete and orthogonal in WL.

Proof. The orthogonality and completeness of the system {gk} in Hs(0, 2π) is proven,
e.g., in [1]. The proof for the space WL is based on the equivalence of norms.

The range of k implies a minor change in the notation introduced above. For the
basis system (4), notice that

RL(x, y) =
∞∑

k=−∞

gk(x)g∗k(y)

|gk|2L
=

∞∑
k=−∞

exp(−ik(x− y))

|gk|2L
(5)

is the Fourier series in L2(0, 2π) with the coefficients |gk|−2
L , |gk|2L = 2π

∑∞
l=LBlk

2l.
Let now the function f to be approximated be nonperiodic on (−∞,∞) and

f (l)(±∞) = 0 for all l ≥ 0. Let us define the generating function RL(x, y) as the
Fourier transform of the function |gk|−2

L of a continuous variable k,

RL(x, y) =

∫ ∞
−∞

exp(−ik(x− y))

|gk|2L
dk, (6)

if the integral exists. Using the effect of transition from the Fourier series (5) to
the Fourier transform (6), we have transformed the basis functions, enriched their
spectrum, and released the requirement of periodicity of f . Moreover, if the inte-
gral (6) does not exist, in many instances we can calculate RL(x, y) as the Fourier
transform F of the generalized function |gk|−2

L of k.
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Choosing now a particular sequence {Bl}, we complete the definition of the in-
ner product and norm (2) in a particular WL. Let us thus put Bl = 0 for all l
with the exception of B2 = 1 (cf. [4]). It means that we have L = 2 and min-
imize the usual L2 norm of the second derivative of the interpolant (3), z(x) =∑N

j=1 λjR2(x,Xj) + a0 + a1x. We have |gk|22 = 2πk4 and putting r = |x − y|, we
arrive at

R2(x, y) = F(1/(2πk4)) = 1
12
r3, (7)

where F denotes the integral Fourier transform or the Fourier transform of a gener-
alized function [2]. It is easy to find out that this version of smooth approximation
is, in fact, the well-known cubic spline interpolation.

There are further practical examples of smooth approximation where the integral
generating function RL can be calculated with the help of the Fourier transform.

We can generalize the smooth interpolation procedure of Sec. 2 to Rn, n being
a positive integer. We do not introduce the notation in Rn in detail but will you keep
in mind that all the derivatives are partial now. We choose the system of periodic
exponential functions gk(x) = exp(−ik ·x) of pure imaginary vector argument, which
can be proven to be complete and orthogonal in WL, and put r equal to the Euclidean
norm of x− y.

Let n = 2. In the definition of inner product in WL, we put L = 2 and con-
struct analog of a spline in two dimensions. The interpolant has the form z(x) =∑N

j=1 λjR2(x,Xj) + a0 + a1x1 + a2x2 and it is |gk|22 = 2π(k2
1 + k2

2)2. We arrive at

R2(x, y) = F(1/(2π(k2
1 + k2

2)2)) = C2r
2 ln r + C ′2r

2, where C2, C ′2 are constants [2].
Let n = 3. With the same choice L = 2 we construct analog of a spline in three

dimensions. The interpolant has the form z(x) =
∑N

j=1 λjR2(x,Xj) + a0 + a1x1 +

a2x2 + a3x3 and it is |gk|22 = 2π(k2
1 + k2

2 + k2
3)2. We have R2(x, y) = F(1/(2π(k2

1 +
k2

2 + k2
3)2)) = C3r, where C3 is a constant [2].

For n = 1, we will also consider another interesting choice of {Bl} with the
system (4). Putting L = 0, r = |x− y| and, in particular, Bl = D2l/(2l)!, D = 1

3
, we

calculate [4]

R0(x, y) =
1

2D cosh(πr/(2D))
. (8)

4. Computational comparison

To present results of numerical experiments we use two complete and orthogonal
systems {gk} in WL. We assume that the function to be interpolated is not periodic.

(i) Exponential functions of pure imaginary argument (4) {dashed line} with
the generating function (7), L = 2, B2 = 1, i.e. cubic spline interpolation.

(ii) The same functions (4) {dashed line} with the generating function (8).

(iii) Orthonormalized monomials {dotted line}. The system of monomials
hk(x) = xk, k = 0, 1, 2, . . . , is orthonormalized numerically on (−1, 1) by the Gram-
Schmidt procedure with respect to the inner product (g, h)0. We use L = 0 and Bl

the same as in (ii). R0(x, y) is evaluated numerically.
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Figure 1: N = 5, “pole” x = 0.25 is not an interpolation node. Curves at x = 0.80
from top to bottom: (i), (ii), true, (iii), (iv)

Next two interpolation methods are classical.

(iv) Polynomial interpolation {dotted line}.
(v) Rational interpolation {dash-dot line}.

The interpolated function

f(x) = ln( 1
100

(x+ 1
2
)2 + 10−5) +

6

1 + 16(x− 1
4
)2

+ 6 (9)

has “almost a singularity” at x = −1
2

and “almost a pole” at x = 1
4
. The smooth

as well as classical interpolation of the function (9) has been constructed in several
equidistant grids of N nodes on [−1, 1]. Some very inaccurate results (obtained e.g.
by the polynomial interpolation of high degree) are omitted in some of the following
graphs. In the figures, the solid line represents the true solution, i.e. the function (9).
The results of interpolation are in Fig. 1 and 2. They show some qualitative behavior
of the results but the quantitative properties can hardly be seen.

5. Conclusion

Since the extent of this contribution is limited we presented only a single exam-
ple. It would not be fair to draw principal conclusions from it. The computation
shows that the smooth interpolation is a competitive method. The L∞ error of all
the methods used, except for error of the polynomial interpolation, decreases as N
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Figure 2: N = 17. Curves at x = −0.55 from top to bottom: true, (i) identical to
(ii) and (iii), (v)

increases. Nevertheless, we should keep in mind that the only ultimate interpolation
conditions are the values at nodes.

The case of n > 1 is much more interesting and makes many important appli-
cations possible. The interpolation nodes can be arbitrarily placed in the plane or
space and large sets of data measured can be handled. There are also several further
choices of the sequence {Bl} that lead to a smooth approximating function possessing
some “physical properties” like the cubic spline.
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Abstract

This paper presents the main concept and several key features of the user-defined
interface of COMSOL Java API for the solution of mechanical problems in fractured
rock. This commercial computational system based on FEM has yet to incorporate
fractures in mechanical problems.

Our aim is to solve a 2D mechanical problem with a fracture which is defined
separately from finite-element discretization and the fracture properties are included
through the constitutive laws. This will be performed based on the principles of the
extended finite element method as a way of fracture description, enrichment functions
for rock elements containing fractures, etc.

We present an approach to describing a simple mechanical problem in COMSOL
Java API together with a proposal of a solution method, and we also demonstrate the
potential of COMSOL Java API for solving more complicated problems with fractures.

1. Introduction

For many applications it is important to evaluate the effects of fractures in rock
on its mechanical properties and the effects of stress on fracture opening/closure.
An example which is also the context of our work is the concept of the geological
disposal of spent nuclear fuel, with three protective barriers (copper/steel containers,
bentonite, and a stable rock massif). Safety analysis requires an understanding
and prediction of the complex thermo-hydro-mechanical-chemical processes and the
current engineering software can sometimes lack the required detail.

Despite the fact that a number of methods for solving problems of fractured rock
mechanics (DEM [2], XFEM [7], FEM with special fracture elements [5]) are imple-
mented in various software packages, most are too specialized and have complicated
coupling with other important processes.
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In this paper we present a methodology for solving specialized problems using
a commercially available code programming interface, combining the advantages of
established supported code with the freedom of an open-source project. The use of
Java API in COMSOL Multiphysics software is presented here. Firstly, we describe
the implementation process of a simple plane strain problem, then we highlight
several advanced functions and other required features (constitutive laws, XFEM
principles) of COMSOL Java API.

2. Description of a plane strain problem

The approach will be described using a basic 2D plane strain problem which is
represented by Hooke’s law σx

σy
τxy

 =
E

(1 + ν)(1− 2ν)

 1− ν ν 0
ν 1− ν 0
0 0 1− 2ν

 εx
εy
γxy

 , (1)

where σx, σy and τxy are normal and shear components of the stress tensor, E is
Young’s modulus, ν is Poisson’s ratio, εx, εy and γxy are normal and shear compo-
nents of the strain tensor and the equilibrium equations are written as

∂σx
∂x

+
∂τxy
∂y

+ kx = 0 (2)

∂τxy
∂x

+
∂σy
∂y

+ ky = 0,

where kx and ky are components of a force vector.
The dependence of the strain tensor components on components of the displace-

ment vector u = [u, v]T for a small deformation is expressed by

εx =
∂u

∂x
εy =

∂v

∂y
εxy =

1

2

(
∂v

∂x
+
∂u

∂y

)
=

1

2
γxy. (3)

If we substitute Hooke’s law (1) together with the strain-displacement relation (3)
into the equilibrium equations (2), we get the form

∂

∂x

[(
λ+ 2µ

) ∂u
∂x

+ λ
∂v

∂y

]
+

∂

∂y

[
µ

(
∂v

∂x
+
∂u

∂y

)]
+ kx = 0 (4)

∂

∂x

[
µ

(
∂v

∂x
+
∂u

∂y

)]
+

∂

∂y

[
λ
∂u

∂x
+
(
λ+ 2µ

)
+
∂v

∂y

]
+ ky = 0,

where λ and µ are so-called Lamé coefficients, which can be derived from Young’s
modulus and Poisson’s ratio. This form can be used for specific expression of solved
problem in a “General form PDE” in COMSOL Multiphysics.
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3. Computational tool

The computational system COMSOL Multiphysics based on FEM was chosen as
an appropriate computational tool. Despite the fact that features for calculating with
fractures in mechanical problems are not included in it, COMSOL provides sufficient
variability for their implementation. In addition it has proven to be a suitable tool
for solving coupled processes.

We use a special interface of COMSOL Multiphysics called the Java application
programming interface (COMSOL Java API, [1]), which provides access to special
extended features and functions that are not available from commonly used graphical
user interface (GUI).

The basic model is possible to define and export from GUI (model.java) or di-
rectly define in the integrated development environment Eclipse, [3] using the ap-
propriate commands. Then the model in Java code is processed in Eclipse. This
environment also allows new results to be directly exported in different formats
(.jpg, .png, .txt, .cls) or the access and connection with the GUI of COMSOL Mul-
tiphysics. A diagram of the approach to the solution using COMSOL is summarized
in Figure 1.

Figure 1: Approach of the solution using COMSOL Java API, solved using a user-
defined PDE with Hooke’s law (1) as a constitutive relation
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The built-in physical interface which describes the physical process using a partial
differential equation is replaced by a “Mathematical module” with a “General form
PDE” interface. Within this module it is possible to apply a user-defined partial
differential equation through the individual coefficients. The form of the partial
differential equation is specified as

ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ = f u = [u, v]T , (5)

where u is a displacement vector, ea is a mass coefficient, da is a damping coefficient
and matrix Γ can be expressed by

Γ1x = (λ+ 2µ)
∂u

∂x
+ λ

∂v

∂y
, Γ1y = µ

(
∂u

∂y
+ λ

∂v

∂x

)
, (6)

Γ2x = Γ1y Γ2y = λ
∂u

∂x
+ (λ+ 2µ)

∂v

∂y

)
,

which is taken from (4). For a steady-state problem the last divergence term on the
left side of the equation (5) and ea = 0, da = 0 are considered.

The results of the model can be displayed using exported model.class in the GUI
of COMSOL Multiphysics or in a simply created graphical interface in COMSOL
Java API. Unfortunately, exported model with Java modifications is unable to store
results for recomputed solution in the GUI (extended functions are not included
in GUI).

4. Perspectives for fracture mechanics implementation

The previous section described the elementary plane strain problem and how to
define and solve it in COMSOL Java API with a user-defined PDE. The following
section specifies other important aspects and features (i.e. fractures with a predeter-
mined fixed position and their influence on the elastic properties of rock, constitutive
laws, special functions of COMSOL Java API, use of certain XFEM principles) which
are necessary for defining the problem with the fractures.

4.1. Constitutive laws

Constitutive laws are special empirical or theoretical formulas which express the
behaviour of a material under a general load. They are important for describing
the rock-matrix behaviour and also for expressing the influence of a fracture on rock
mass properties. A large number of constitutive laws are referred to in [6]: different
relations are proposed for rock and fractures. Constitutive laws are often described
in terms of “strength-form” (they describe the limit stress when the failure occurs)
but for our purpose the stress-strain relation is more suitable.

The simplest and the most popular formula for expressing elastic rock behaviour
is the above-mentioned Hooke’s law (1) with two independent material parameters
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for an isotropic material. The elastic/plastic behaviour of the rock can be described
using the Mohr-Coulomb or Hoek-Brown constitutive laws, which assume that the
failure occurs under the highest shear stress.

The behaviour of the fractures can be described for example by empirical criteria
(e.g. the Mohr-Coulomb criterion, Goodman’s law, the Barton-Bandis criterion) or
theoretical models (the Amadei-Saeb or Plesha model). For example, the Barton-
Bandis model is an empirical constitutive model requiring JRC (joint roughness
coefficient) and JCS (joint wall compressive strength) parameters.

4.2. Fractures and their representation

Fractures and their representation in the model are the next important part of
the implementation. COMSOL Multiphysics does not have any built-in approach to
solving mechanical problems with fractures. Thus, fractures have to be controlled
externally in Java code.

Fractures are represented by lines in the 2D case and are defined separately (they
are not dependent on the computational mesh). A similar approach is used in the
XFEM family of methods [4]. Many of them use the so-called level-set method [8],
which does not require curve parameterization and is also more suitable for problems
with moving interfaces or growing fractures.

Figure 2: XFEM solution for fractures in COMSOL Java API
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4.3. Implementation and related problems

We can then apply several principles of the Extended Finite Element
method ([7, 4]) to the problem with fractures. XFEM is a numerical method based on
a generalization of FEM and it enables a local enrichment of approximation spaces
(hence discontinuous behaviour in a small part of the domain). In this way it is
possible to define both weak and strong discontinuities (discontinuity in the stress
and strain field or discontinuity in the displacement field, respectively).

For the implementation of XFEM it is necessary to use special functions available
in COMSOL Java API (see Figure 2). One of these functions is the “Input matrix”,
which enables the input of an externally assembled matrix or vector (stiffness, mass
or damping matrix and load vector) in a sparse form. One disadvantage is that the
matrices are not stored in the model, which has to be processed externally.

The next problem, which is necessary to deal with it, is the detection of inter-
section elements (elements of the rock matrix which are intersected by the fracture).
This feature can be solved by code in COMSOL Java API using the known position
of the fracture and the positions of the individual elements from the exported mesh
file.

5. Conclusions

We have shown that the COMSOL Java API can be conveniently used for testing
or applying new modelling concepts and numerical schemes, which can be of interest
to the wider community.

The example of including fractures to the elasticity problem has been presented
on a conceptual level, with its implementation planned for future work.
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Abstract

This paper focuses on the mathematical modelling and the numerical approxima-

tion of the flow of two immiscible incompressible fluids. The surface tension effects are

taken into account and mixed boundary conditions are used. The weak formulation

is introduced, discretized in time, and the finite element method is applied. The free

surface motion is treated with the aid of the level set method. The numerical results

are shown.

1. Introduction

The mathematical modelling of two-phase flows with the consideration of the free
surface motion influenced by the surface tension is addressed in various scientific as
well as technical applications. Such a problem is important both from the mathe-
matical modelling point of view and also from the technical practice. Particularly,
its numerical approximation is very challenging task, see among others [1], [2] or [3].
The approximation of the surface tension naturally can play a key role here.

In this paper, we consider the two-dimensional flow of two immiscible fluids, the
problem is mathematically described and the variational formulation is introduced.
For the discretization the finite element(FE) method is used. The free surface motion
is realized using the level set method, cf. [7] or [5]. In the case of high surface tension,
a modification of the standard FE method is required to avoid the spurious currents,
see [6] or [1]. For the verification of the implemented method a benchmark problem
is solved, cf. [3].

2. Mathematical description

Let us consider the computational domain Ω ⊂ R
2 with the Lipschitz continuous

boundary ∂Ω with its mutually disjoint parts ΓW , ΓS, ΓO. The domain is occupied
at time t by two immiscible fluids, i.e. Ω = ΩA

(t) ∪ΩB
(t), the fluid A occupies ΩA

(t) and

the fluid B occupies ΩB
(t), see Fig. 1. The interface between the two fluids is denoted
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Figure 1: The computational domain Ω, its sub-domains ΩA
(t) and ΩB

(t), the interface Γ̂t

and the normal vector.

by Γ̂t = ∂ΩA
(t) ∩ ∂ΩB

(t). Further, we denote by Γk
W,t = ΓW ∩ ∂Ωk

(t), Γ
k
S,t = ΓS ∩ ∂Ωk

(t)

and Γk
O,t = ΓO ∩ ∂Ωk

(t) for k = A or k = B.

The flow of the fluid A in the domain ΩA
(t) is described by the incompressible

system of Navier-Stokes equations

∂
(

ρAuA
)

∂t
+ ρA(uA · ∇)uA −∇ · σA = ρAf , ∇ · uA = 0, (1)

where ρA denotes the constant fluid A density, uA = uA(x, t) is its flow velocity
defined for x ∈ ΩA

(t) and t ∈ [0, T ), and σA is the Cauchy stress tensor given by

σA = −pAI + µA(∇uA +∇TuA), where pA = pA(x, t) is the pressure and µA is the
viscosity coefficient. Similarly, the flow of the fluid B in the domain ΩB

(t) is governed
by

∂
(

ρBuB
)

∂t
+ ρB(uB · ∇)uB −∇ · σB = ρBf , ∇ · uB = 0, (2)

where ρB denotes the constant fluid B density, uB = uB(x, t) is its flow velocity
defined for x ∈ ΩB

(t) and t ∈ [0, T ), and σB is the Cauchy stress tensor given by

σB = −pBI + µB(∇uB +∇TuB), where pB = pB(x, t) is the pressure and µB is the
viscosity coefficient. In eqs. (1-2) f denotes the gravitational acceleration (acting in
the negative x2 direction).

The motion of both fluids is then driven by the continuity equation

∂ρ

∂t
+ (u · ∇)ρ = 0. (3)
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The domains ΩA
(t) and ΩB

(t) are then implicitly determined by the equations ρ = ρA

and ρ = ρB, respectively.
The initial conditions at time t = 0 are given uA(x, 0) = 0, ρ(x, 0) = ρA for

x ∈ ΩA
(0) and uB(x, 0) = 0, ρ(x, 0) = ρB for x ∈ ΩB

(0). On the interface the following

boundary conditions are specified on Γ̂t

a) uA = uB, b) σA · n− σB · n = γκn, (4)

where γ is the surface tension coefficient, κ denotes the curvature of the interface ΓI

and n here denotes the normal to the ΓI pointing into ΩB
(t). On the boundary ∂Ω

the following boundary conditions are prescribed

a) uA = 0 on ΓA
W,t, uB = 0 on ΓB

W,t,

b) uA · n = 0, ∂(uA·t)
∂n

= 0 on ΓA
S,t, uB · n = 0, ∂(u

B ·t)
∂n

= 0 on ΓB
S,t,

c) σA · n = 0 on ΓA
O,t, σB · n = 0 on ΓB

O,t,

(5)

where n denotes the unit outward normal to the boundary of Ω, and t is the unit
tangent vector to the boundary of Ω.

3. Variational formulation

In order to introduce the weak formulation, we start with the definition of the
function space Q = L2(Ω) for the pressure and V the function space for the velocity,
where V = {v ∈ H1(Ω) : v = 0 on ΓW , v · n = 0 on ΓS}. Now, let us take the
test function v ∈ V and multiply the first equations in (1-2) by v, integrate over Ω,
use Green’s theorem, apply the boundary conditions (5b-c) and use the interface
condition (4b). We get
∫

ΩA
(t)

ρA
(

∂uA

∂t
+ (uA · ∇)uA

)

· v + σA · (∇v) dx−

∫

ΩA
(t)

ρAf · v dx + (6)

∫

ΩB
(t)

ρB
(

∂uB

∂t
+ (uB · ∇)uB

)

· v + σB · (∇v) dx−

∫

ΩB
(t)

ρBf · v dx =

∫

Γ̂t

γκn · v dS.

Formulation (6) can be written in a more compact form using the Heaviside function
H(x, t) defined as H(x, t) = 1 for x ∈ ΩA

(t), H(x, t) = 0 for x ∈ ΩB
(t) ∪ Γ̂t. The density

and the viscosity functions then are defined by ρ(x, t) = ρAH(x, t) + (1−H(x, t))ρB

and µ(x, t) = µAH(x, t) + (1 − H(x, t))µB, respectively. Further, the functions
u = u(x, t) and p = p(x, t) can be defined by

u(x, t) =

{

uA(x, t) for x ∈ ΩA
(t),

uB(x, t) for x ∈ ΩB
(t),

p(x, t) =

{

pA(x, t) for x ∈ ΩA
(t) \ Γ̂t,

pB(x, t) for x ∈ ΩB
(t) \ Γ̂t.

Using this notation, the equation (6) then can be written as
∫

Ω

ρ

(

∂u

∂t
+ (u · ∇)u

)

· v + σ · (∇v) dx =

∫

Γ̂t

γκn · v dS +

∫

Ω

ρf · v dx, (7)
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where σ is the Cauchy stress tensor given by σ = −pI + µ(∇u +∇Tu). Using the
Dirac delta function δΓ̂t

of the interface Γ̂t the equation (7) can be written in the
form

ρ
∂u

∂t
+ ρ(u · ∇)u−∇ · σ = ρf + γκnδΓ̂t

. (8)

Surface tension. In order to treat the surface tension term, we start with its weak
reformulation. Let us define the tangent derivative ∇Γ as ∇Γg = ∇g−(n ·∇g)n and
the Laplace-Beltrami operator △Γ = ∇Γ · ∇Γ. Now, using the relation κn = △Γx

and applying the integration by parts on Γ̂t we get
∫

Γ̂t

γκn · v dS = −

∫

Γ̂t

γ(∇Γx) · (∇Γv) dS, (9)

where for the sake of simplicity it was assumed that Γ̂t is a closed curve.

Level set equation. Furthermore, to treat the motion of the free surface Γ̂t the level
set method is applied. First, the initial condition for the level set function φ = φ(x, t)
is prescribed by φ(x, 0) = dist(x, Γ̂0) > 0 for x ∈ ΩA

(0), φ(x, 0) = −dist(x, Γ̂0) < 0 for

x ∈ ΩB
(0), and φ(x, 0) = 0 for x ∈ Γ̂0. The motion of the interface Γ̂t is then realized

by forcing the function φ to solve the equation

∂φ

∂t
+ u · ∇φ = 0, (10)

which guarantees that the interface is moving with the velocity u. Now, the Heaviside
function H(x, t) is defined using the sign of the level set function φ(x, t). Taking into
account the level set equation (10) and the definition of the function ρ(x, t), the
continuity equation (3) is formally satisfied.

4. Numerical approximation

Flow step. For simplicity, let us consider the equidistant partition of the time
interval [0, T ) given by tn = n∆t, where n = 0, 1, . . . , N and ∆t = T/N . Let us
denote by u(n), p(n), φ(n), ρn and µn approximations of the velocity, the pressure the
level set function, the density and the viscosity at the time instant tn, respectively.
Let us approximate the time derivative by the backward Euler formula, i.e.

∂u

∂t
|t=tn+1

≈
u(n+1) − u(n)

∆t
,

∂φ

∂t
|t=tn+1

≈
φ(n+1) − φ(n)

∆t
.

Let us assume that u(n), p(n), φ(n+1), µn+1 and ρ(n+1) are already known. Then
the time discretized weak formulation of (8) reads: Find u = un+1 ∈ V and
p = pn+1 ∈ Q such that

∫

Ω

ρn+1(x)

(

u− un

∆t
+ (u · ∇)u

)

· v − p(∇ · v) + µn+1(x)∇u · ∇v dx

(11)
+

∫

Ω

(∇ · u)q dx = −

∫

Γ̂n+1

γ(∇Γx) · (∇Γv) dS +

∫

Ω

ρn+1(x)f · v dx
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holds for all v ∈ V and q ∈ Q. In the practical computations we assume that
the domain Ω is a polygonal and the spaces V and Q are approximated by the FE
subspaces V h and Qh defined over an admissible triangulation Th, respectively. For
the approximation the well-known Taylor-Hood FE are used, i.e. the velocity is
sought in the space V h = [Hh]

2 ⊂ V , where

Hh = {φ ∈ C(Ω);φ|K ∈ P2(K) for each K ∈ Th}, (12)

where Pk(K) denotes the space of all polynomials on K of degree less or equal to k.
Next, the pressure (as well as the level set function) is approximated in the space

Qh =
{

φ ∈ C(Ω) : φ|K ∈ P1(K) for each K ∈ Th

}

. (13)

The discrete flow problem then reads: Find uh = un+1
h ∈ V h and ph = pn+1

h such
that equation (11) holds for any test function v := vh ∈ V h and q := qh ∈ Qh. In
order to treat the discontinuity of the pressure due to the presence of the surface
tension the extended finite element method (XFEM) is applied, see e.g. [6].

Extended finite element method. The XFEM enlarges the original FE space Qh

using the localization of an enrichment function. For the localization the original base
functions of Qh are used, i.e. we denote the index set J = {1, . . . , n}, n = dimQh

and the mesh nodes by xj , j ∈ J . The nodal base functions are then denoted by
qi ∈ Qh, i ∈ J and satisfy qi(xj) = δij . The J ′ is the subset of all the neighbours of

the interface Γ̂t, i.e. J ′ = {j ∈ J : supp qj ∩ Γ̂t 6= ∅}. We shall use the discontinu-
ous enrichment function HΓ(x) given as the Heaviside function HΓ(x) = H(x, tn+1).
Now, the enrichment of the space Qh is made using the discontinuous base func-
tions qxfej defined by qxfej (x) = qj(x) (HΓ(x)−HΓ(xj)). Here, HΓ(xj) can be left
out from the right hand side as this only adds a constant multiple of the continuous
base function qj(x). On the other hand, this term makes the function qxfej (x) being

zero at every node xi, i ∈ J and also makes the support of qxfej (x) localized only

to the elements containing the interface Γ̂t, which simplifies the practical discretiza-
tion of the problem. The FE space Qh is then replaced by the extended FE space
Qxfe

h = Qh ⊕ span{qxfej : j ∈ J ′}.

Level set step and coupled problem. Eq. (10) is time discretized, weakly
formulated and the standard Galerkin FE method is employed, leading to the discrete
system

M(Φ(n+1) − Φ(n)) + ∆tKΦ(n+1) = 0, (14)

where M is the consistent mass matrix, the matrix K represents the convection and
Φ(k) =

(

φ(k)(xi)
)

i∈J
denotes the nodal values of the level set function. In order

to obtain a stable scheme, the algebraic flux corrections can be applied, see [4].
Nevertheless, in the considered case of a continuous level set function ϕ, this is
mostly equivalent to the Galerkin method (at least for a limited time period). It
is also known, that for the level set method a re-initialization step is needed to
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Figure 2: The result of the rising bubble case: The shape of the interface at time
instant t ∈ {0, 0.5, 1, 1.5, 2, 3} (on the left), the velocity magnitude isolines (middle),
and the pressure isolines (on the right).

maintain the distance like property, see also [3]. Thus we simply use the Galerkin
FE approximations and perform the re-initialization step every 5-40 iterations.

The solution of the coupled problem is then performed by the de-coupled algo-
rithm: Assume that the approximations of un, pn, φn, ρn, µn and Γ̂(n) are already
known.

I. Solve (14) using the flow velocity un to determine φn+1. Perform the re-
initialization if needed.

II. Using the approximation φn+1 determine ρn+1, µn+1 and Γ̂n+1.

III. Solve (11) for approximation of flow velocity un+1 and pn+1.

IV. Set n:= n + 1 and go to I.

5. Numerical results

The numerical results are shown for the case of a rising bubble considered in [3],
where the following values were used ρA = 1000 kgm−3, ρB = 100 kgm−3, µA =
10Pa s, µB = 1Pa s, f = (0,−0.98)m s−2 and γ = 24.5N/m. The height of the
computational domain is H = 2m and width is W = 1m. The fluid B is originally
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Figure 3: The quantitative results for the rising bubble case: The graphs of the
center of mass Ty, the circularity C and the rise velocity V from the left to the right,
respectively.

located in the circle of the diameter 0.5m, whose center is displaced by 0.5m up
from the bottom of the domain. The boundary ΓW contains the bottom and top of
the domain, whereas ΓS includes the rest of the boundary (i.e. ΓO = ∅). Due to the
gravity force, the fluid B with the lower density starts to rise, which also leads to
a shape deformation. However, after some time the fluid B - due to the high value of
the surface tension - develops a more stable shape, which keeps rising undeformed, see
Fig. 2. The computations were performed on a triangular mesh with an equidistant
partition and the spatial step h = 1/40 (the coarsest mesh used in [3]). The time
step used in the computation was ∆t = 0.002. The motion of the domain ΩB

(t)

with the area A(t) was tracked in terms of the y−coordinate of the center of mass
Ty(t) =

∫

ΩB
(t)

x2 dx/A(t), the circularity defined by C(t) = 2
√

πA(t)/
∫

∂ΩB
(t)

1 dS and

the rise velocity V =
∫

ΩB
(t)

u2 dx/A(t). In order to verify the presented numerical

method the values of Ty, C and V were computed at every time instant. The graphs
of Ty, C and V in dependence on time shown in Figure 3 agrees well with the results
in [3]. The quantitative comparison of the referenced values presented in [3] is shown
in Table 1, where Ty(3) is the mass center location at time t = 3 s, Cmin denotes
the minimal circularity, Vmax denotes the maximal rise velocity, t(C = Cmin) and
t(V = Vmax) are the time instants of their occurrence, respectively.

6. Conclusion

The detailed mathematical description of the motion of two immiscible fluids flow
was presented, where the surface tension was approximated using its weak reformu-
lation. The first order time discretization was used and the finite element method
was used for the space discretization. The XFEM was employed to capture correctly
the discontinuity of the pressure along the surface caused by the surface tension. The
solution of the flow problem was coupled with the FEM applied for solution of the
transport equation for the level set function. The decoupled strategy was used for
the solution of the coupled problem. The presented numerical method was applied
for approximation of the benchmark [3]. The data from the numerical simulations
shows very good agreement with the reference values even though here only the first
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Ty(3) Cmin t(C = Cmin) Vmax t(V = Vmax)
ref. [3] 1.0813 0.9013 1.9041 0.2417 0.9213
present study 1.0801 0.9025 1.898 0.2421 0.92

Table 1: The quantitative results for the rising bubble case: the comparison of the
computed and the reference quantities.

order in time discretization was used. The obtained numerical results verify the
applied numerical method and its usability for approximation of flows influenced by
the surface tension.
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Abstract

Development of engineering structures and technologies frequently works with ad-
vanced materials, whose properties, because of their complicated microstructure, can-
not be predicted from experience, unlike traditional materials. The quality of com-
putational modelling of relevant physical processes, based mostly on the principles of
classical thermomechanics, is conditioned by the reliability of constitutive relations,
coming from simplified experiments. The paper demonstrates some possibilities of
computational identification of such relations, namely for heat and mass transfer,
coming from original experimental and numerical results obtained at the Brno Uni-
versity of Technology, in selected engineering applications.

1. Introduction

The analysis of inverse problems is a relatively new interdisciplinary field of
knowledge, connecting several theoretical and experimental branches: i) theory of
ordinary and partial differential equations, ii) development of robust and effective
computational algorithms, coming from the least squares, conjugate gradients, etc.
approaches – cf. [8], iii) handling unstable and ill-posed problems, needing construc-
tion of artificial regularizers, as discussed in [15], p. 26, iv) transparent physical
analysis, taking into account the most significant processes in engineering problems,
namely those motivated by the development of structures and technologies, working
with advanced materials, whose properties, because of their complicated microstruc-
ture, cannot be predicted from experience, unlike traditional materials, v) design of
experiments for reliable identification of mechanical, thermal, moisture, etc. charac-
teristics of such materials.

However, the general conception of inverse problems covers problems in nonde-
structive testing, seismic exploration, remote sensing, radio- and tomography, dis-
cussed in [15], p. 192, as well as the determination of an unknown source in the
heat equation thanks to some overdetermined values of temperature and heat fluxes
like [36]. In this paper we shall pay attention to the shorter list of inverse problems:
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from certain balance laws from classical thermomechanics, supplied by constitutive
relations, we shall try to determine the unknown or uncertain values of engineering
macroscopic characteristics occurring in such relations, thanks to some overdeter-
mined data, obtained by some well-advised experiments.

2. Physical and engineering considerations

Respecting the standard notation of Lebesgue, Sobolev, Bochner, etc. (abstract)
function spaces by [25], p. 14, we shall start with a model problem from classical ther-
momechanics: the conservation of a scalar quantity u ∈ L2(I, V ) with V = W 1,2(Ω)
on certain domain Ω in the Euclidean space R3 with the boundary Γ supplied by the
Cartesian coordinates x = (x1, x2, x3), and on some finite time interval I = [0, ς],
bounded by a constant ς, can be expressed, following [4], p. 9, in the form

ε̇(u) +∇ · η(u) = f on I × Ω ; (1)

dot symbols (here and later everywhere) refer to derivatives with respect to t ∈ I,
f ∈ L2(I,H) with H = L2(Ω) refers to some volume source and η : L2(I, V ) →
L2(I, V ) and ε : W 1,2(I,H)→ W 1,2(I,H) are certain material-dependent mappings;
for the example of conservation of energy with u taken as (absolute) temperature,
thermal fluxes η(u) and enthalpic (evolutionary) terms ε(u) see [25], p. 252. Let us
assume that Ω is sufficiently smooth to guarantee the validity of Sobolev imbedding,
trace and similar theorems by [25], p. 16, needed also in the Gelfand triple by [25],
p. 190; more general geometrical configurations could be studied (overcoming a lot
of technical difficulties) following [21], p. 62, 222 and 385. Let Γ be decomposed to
some disjoint parts Γc and Γi; consequently we are able to formulate the boundary
conditions of the Neumann type

η(u) · ν = g on I × Γc (2)

utilizing the (formally) outward unit normal ν(x) = (ν1(x), ν2(x), ν3(x)) on Γ, and
those of the Robin type

η(u) · ν = ψ(u, ua) on I × Γi ; (3)

here we need to know some ambient values ua ∈ L2((I, L4(Γc)), together with a new
(material) interface-dependent mapping ψ : L2(I, V × L4(Γc))→ L2(I, L2(Γi)). We
shall consider the initial u(., 0) = 0 on Ω here only; it can be verified that any
equilibrium initial condition can be converted to this form.

The much-favoured engineering linearizations of mappings included in (1), (2)
and (3) (prime symbols refer to derivatives by the following variables) are ε̇(u) =
ε′(u)u̇ ≈ κu̇ with some κ ∈ L∞(Ω), η(u) = −∇β(u) = −β′(u)∇(u) ≈ −λ∇u (in
the Fourier, Fick, . . . “laws”) with some λ ∈ L∞(Ω) and ψ(u, ua) ≈ γ(u − ua) with
some ψ : L2(I, V × L4(Γc)) → L2(I, L2(Γi)). Let us notice that even the exis-
tence of some β(u) represents an additional assumption: it forces the zero rotation
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Ω
known f , seeking for λ and κ

Γc
known g and also uc

(possible compensation of missing knowledge of λ, κ, γ)

Γi
known ua, seeking for γ

Figure 1: A simplified scheme of geometrical configuration for a model problem.

of η(u). Moreover, such scalar characteristics are admissible just for (macroscopi-
cally) isotropic media; in more general cases matrix characteristics are necessary.

Fig. 1 shows the above sketched geometrical configuration. To enable the effective
analysis with some unknown or uncertain characteristics, some uc ∈ L2(I, L2(Γc)) is
prescribed, too, considered to coincide with the traces of u.

For simplicity, we shall introduce the following notation of scalar products in
L2(I,X), with (generalized) functions φ and φ̃ from corresponding spaces, i. e. X =
L2(Ω), X = L2(Ω)3, X = L2(Γ),

(φ, φ̃) =

∫
I

∫
Ω

φ(x)φ̃(x) dx dt , (∇φ,∇φ̃) =

∫
I

∫
Ω

∇φ(x) · ∇φ̃(x) dx dt ,

〈φ, φ̃〉 =

∫
I

∫
Γ

φ(x)φ̃(x) ds(x) dt ,

with s(x) in the sense of Hausdorff measure on Γ; 〈φ, φ̃〉i, 〈φ, φ̃〉c will denote the same

as 〈φ, φ̃〉, with Γi, Γc instead of Γ. Such scalar products are available because X are
still Hilbert spaces; some appropriate dualities can be considered instead of them in
more general considerations.

The significance of particular physical (and chemical and other) processes de-
pends on engineering applications. In particular, in civil engineering the following
processes come into consideration: i) heat transfer (conduction, convection, radia-
tion), ii) air flow, iii) moisture redistribution in porous media, iv) salt and contami-
nant transport, v) chemical reactions (maturing silicate mixtures, carbonation, . . . ),
vi) phase changes (including those in advanced phase change materials), vii) me-
chanical deformation (elasticity, plasticity, creep, damage, . . . ). The above sketched
thermomechanical approach generates the balance conditions for a) mass (continuity
equations) - with variable density, b) (linear and angular) momentum (Navier - Stokes
equations, formulated for various continuum models: by Boltzmann, Cosserat, etc.)
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- with variable velocity components (in some reference geometrical configuration),
c) energy (Fourier equation) - with variable temperature, d) (semi-)empirical con-
stitutive laws for remaining quantities, separately for particular phases. Bridging
between micro- and macrostructure could be performed using some periodic homog-
enization approach, e. g. the two-scale convergence by [7], or its non-periodic (much
more complicated) generalization by [12]; nevertheless, most engineering approaches
rely on the mixture theory. Such “multiphysical” analysis dates back to the simple
Luikov model, presented in [20], of the simultaneuos heat and moisture transfer,
coming to the system of 2 equations of evolution

τ̇ = ∆τ +Kω̇ , ω̇ = L∆ω + LP∆τ

for 2 unknown functions: the temperature τ(x, t) and the moisture content ω(x, t);
3 material characteristics (positive constants) L, P , K are well-known as Luikov, Pos-
nov and Kossovich numbers. Its slight generalization works with the corresponding
fluxes

ητ = (.)∇τ + (.)∇ω , ηω = (.)∇τ + (.)∇ω
and the deeper analysis of material characteristics in all (.) positions; then the first
equations handles the so-called Dufour effect, the second equation the so-called Soret
one. Much more generalized computational models have been supported by the
computer hardware and software development in the last decades: e. g. the model
of maturing concrete mixture from [33], referring to the approach of [14], contains
20 equations of evolution, coming from the conservation of mass, momentum and
energy related to 4 phases, supplied by appropriate algebraic constitutive relations;
the hydration degree, driving the fraction of particular phases must be evaluated
from an auxiliary ordinary differential equation.

3. Experimental settings

Unlike complicated advanced “multiphysical” models for direct deterministic cal-
culations, all identification procedures try to arrange necessary measurements under
very special conditions, i) to remove or suppress most other influences disturbing
a separate physical process by (1), ii) to simplify the geometrical configuration to
reduce the complexity of the mathematical and computational analysis, e. g. by the
reduction of dimension, thanks to various symmetries, iii) to have a chance to per-
form some reasonable a posteriori uncertainty analysis. An example of such simple
inexpensive measurement equipment for the identification of the thermal conduc-
tivity λ and of the thermal capacity (related to unit volume) κ, assuming γ = 0, is
shown on Fig. 2. The controlled heat flux, accompanied by the temperature recorder,
supplies all information, needed by Fig. 1. Moreover, for sufficiently large plates the
one-dimensional simplification (at least for the first estimate of λ and κ) by [27] is
available. However, the proper analysis in R3 leads to rather complicated relations:
even in the case of exploitation of analytic integrals by [3], p. 193, their numerical
evaluation may be not quite easy.
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Figure 2: Measurement equipment of the hot-plate type: 1 massive polystyrene
insulation layer, 2 couple of aluminium plates: lower heated, upper cold, 3 sample
with unknown λ and κ, 4 direction of controlled heat fluxes, 5 temperature sensor(s),
6 temperature recorder.

Other technical solutions of measurement systems than the just presented hot-
plate one are known as the hot-ball and hot-wire ones – see [1]. The hot-ball approach
works with a sufficiently small heated metal ball, utilizing the spherical coordinates
for all computational evaluations, the hot-wire one with a very thin and long heated
metal wire, utilizing the cylindric coordinates. In some laboratory settings, namely
under hard conditions, as for the testing of fire-clay brickworks, or for the alterna-
tive design of powdery insulation materials at high temperature and in vacuum, as
an important component of certain heat production and storage system based on
sunlight and optical fibers, some modifications are needed, in particular the (nearly)
ideal thin hot wire has to be replaced by some massive hollow (ceramic or metal)
cylinder, as shown on Fig. 3; for more details see [16].

Especially in the case of elevated or high temperature, in maturing concrete mix-
tures, during the fire simulation, etc., the factors λ and κ are not constant; as an
illustrative example, the lower part of Fig. 3 shows λ for selected powdery insula-
tions (aerogel, perlite, crashed fire clay and certain experimental nano-particles-based
material) as a (not very rapidly) increasing function of temperature. Relevant exper-
iments can be organized in several steps at some discrete environmental temperature
levels; the contribution of additional thermal fluxes generated by the measurement
equipment can be considered as negligible. However, such approach is not practicable
in the case of the capillary transfer coefficient λ where (1) describes the conservation
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τ ∇τ η(τ)

Figure 3: From the left: i) high-temperature cylindric measurement equipment,
ii) small model of the thermal accumulator, iii) results of supporting ANSYS-based
computations for the evaluation procedure on a cylindric segment, due to service
wires. Lower graph: temperature dependence of the thermal conductivity for selected
types of powdery insulations.

of moisture mass in some porous material structure (κ = 1 can be set without loss of
generalization) because all experiments show strong dependence of such coefficient
on the moisture volume fraction u, thus the tricks with simple functions (like the
preceding case) are not adequate. Moreover, to prevent the lack of input data for the
identification procedure, the knowledge of values u is needed on Ω or its substantial
part, not only on its boundary. Consequently no direct and nondestructive mea-
surements are available; a reasonable compromise may be the indirect measurement
exploiting the microwave technique, based on the difference between (relative) elec-
tric permittivity and/or magnetic permeability of water and air in pores, as sketched
on Fig. 4; for more details on laboratory measurements including calibration tech-
niques see [26].
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Figure 4: Indirect nondestructive microwave measurement of water content in porous
material structure for the identification of the capillary transfer coefficient.

4. Linear and quasilinear problems

As evident from the previous section, we shall work with the set of (in general
a priori unknown) characteristics ϑ = (γ, λ, κ) in appropriate admissible sets of
(usually positive) functions.

Following [35] and [17], according to [5], p. 135, let us introduce two functionals

F (ϑ, u, v) = (κu̇, v) + (λ∇u,∇v) + 〈γ, uv〉i − (f, v)− 〈g, v〉c − 〈γ, uav〉i ,

G(u) =
1

2
〈w, (u− uc)2〉c ,

supplied by certain weight w ∈ L2(Γc), defined for arbitrary t ∈ I, for u, v ∈ L2(I, V );
consequently u, v ∈ L2(I, L4(Γ)) and uv ∈ L2(I, L2(Γ)). This requires the applica-
tion of the trace theorem; moreover the Sobolev theorem on (compact) imbedding,
the Friedrichs - Poincaré inequality, the Lax - Milgram theorem (and its generaliza-
tions), the properties of Rothe sequences of abstract functions (continuous and dis-
crete Gronwall lemma, Gelfand imbedding, . . . ), the Aubin - Lions lemma for abstract
functions, etc. (cf. [25] and [13]), are needed in the complete proofs of the following
propositions.

Now we are ready to formulate a) a direct model problem, b) a sensitivity one and
c) an adjoint one, useful namely in linearized considerations, including those with
slightly variable material characteristics (due to the motivation from the preceding
section). Such formulations will be useful for the design of a general algorithm for
the analysis of an inverse problem, i. e. the problem of identification of ϑ = (γ, λ, κ)
here. Some particular cases may occur in the literature typically: e. g. [17] takes
variable γ only, moreover in the steady-state case.
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4.1. A direct problem

The weak formulation of a direct problem reads: for some fixed β and u0 = 0
find u such that F (ϑ, u, v) = 0 for any v, i. e.

(κu̇, v) + (λ∇u,∇v) + 〈γ, (u− ua)v〉i = (f, v) + 〈g, v〉c ,

valid for any t ∈ I (here and in all analogous situations). Its strong formulation
comes from the obvious application of the Green - Ostrogradskǐı theorem

(κu̇−∇ · (λ∇u)− f, v) = 〈γ(ua − u)− λ∇u · ν, v〉i + 〈g − λ∇u · ν, v〉c .

However, the reverse application of the same theorem is possible, too; e. g. for the
fundamental solution v∗(x, y) = −1/(4π|x−y|) of the equation ∆v∗(x, y) = 4πδ(x−y)
locally for y ∈ Ω instead of v(x, t) with fixed t ∈ I we obtain

(κu̇, v)− (β(u),∆v) = (f, v) + 〈γ, (u− ua)v〉i + 〈g, v〉c − 〈β(u),∇v · ν〉

Let us remind that generalized initial conditions are also available: there is sufficient
to take f − f0, g − g0, ua − ua0 and u − u0 instead f , g, ua and u where all zero
indices refer to values in t = 0; the same could be done for sensitivity and adjoint
problems, too.

4.2. A sensitivity problem

The weak formulation of a sensitivity problem reads: for some fixed ϑ, ϑ̃ (ex-

pressing some change of ϑ) and u0 = 0 find ũ such that DF (ϑ, u, v, ϑ̃, ũ, o) = 0, with
o referring to zero-valued functions, for any v, i. e.

(κ ˙̃u, v) + (λ∇ũ,∇v) + 〈γ, ũv〉i = 〈γ̃, (ua − u)v〉i − (λ̃∇u,∇v)− (κ̃u̇, v) .

Its strong formulation comes from the obvious application of the Green - Ostrogradskǐı
theorem

(κ ˙̃u−∇ · (λ∇ũ)−∇ · (λ̃∇u), v)

= 〈γ̃(ua − u)− γũ− λ∇ũ · ν − λ̃∇u · ν, v〉i − 〈λ∇ũ · ν + λ̃∇u · ν, v〉c .

The reverse application of the Green - Ostrogradskǐı theorem gives here

(κ ˙̃u, v)−(β(ũ)+ β̃(u),∆v)+〈γ, ũv〉i = 〈γ̃, (ua−u)v〉i−〈κ̃u̇, v〉−〈β(ũ)+ β̃(u),∇v ·ν〉 .

4.3. An adjoint problem

The weak formulation of an adjoint reads: for some fixed ϑ and uς = 0 find v
such that DF (ϑ, u, v, o, ũ, o) = DG(u, ũ) for u coming from a direct problem and for
any ũ, i. e.

−(κũ, v̇) + (λ∇ũ,∇v) + 〈γ, ũv〉i
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Its strong formulation comes from the obvious application of the Green - Ostrogradskǐı
theorem

−(ũ, κv̇ +∇ · (λ∇v)) = 〈ũ, w(u− uc)− λ∇v · ν, 〉c − 〈ũ, γv + λ∇v · ν〉i .

The reverse application of the Green - Ostrogradskǐı theorem gives here

−(ũ, κv̇)− (∆β(ũ), v) + 〈γ, ũv〉i = 〈w, (u− uc)ũ〉c − 〈∇β(ũ) · ν, v〉 .

Combining ũ from a sensitivity and v from an adjoint problem, we receive

〈w, (u− uc)ũ〉c = 〈γ̃, (ua − u)v〉i − (λ̃∇u,∇v)− (κ̃u̇, v) ;

thus it is natural to introduce a new functional

J(ϑ) =

∫
I

G(u)dt .

4.4. Computational algorithms

For simplicity of notation, let us set J∗(γ) = J(ϑ) here, in particular with ϑ =
(γ, o, o); the analogous derivation of the general case is left to the (very patient)
reader. Then we shall need some reasonable estimate γ0 for the construction of
iterations γk with k ∈ {1, 2, . . .}, the evaluation of gradients Gk = (uk(γk) − ua)vk
and differentials DJ∗(γ

k, γ̃k) = 〈γ̃k,Gk〉i, D2J∗(γ
k, γ̃k, γ̃k) = 〈w, ũ(γk, γ̃k)2〉c. The

conjugate gradient algorithm, following [2], can be expressed in the form

γk+1 = γk + akγ̃k ,

γ̃k = bkγ̃k−1 − Gk , in particular γ̃0 = 0 (b1 is not needed) ;

ak come from the minimum line search with the result

ak = −DJ∗(γk, γ̃k)/D2J∗(γ
k; γ̃k; γ̃k) ,

whereas bk are generated by the Fletcher - Reeves formula

bk = 〈Gk,Gk〉i/〈Gk−1,Gk−1〉i ,

the Dai - Yuan formula

bk = 〈Gk,Gk〉i/〈γ̃k−1,Gk − Gk−1〉i ,

or some similar one; for the discussion of suitable choice of such formulae see [23]
and [29]. Especially for an assumed constant γ on Γi this degenerates to the classical
Newton algorithm.

Now the complete computational strategy depends on the choice of number of
iterations for γk, λk and κk separately. However, λk and κk, defined on Ω, may
suffer from the lack of data, namely in the case of their rather rich admissible sets;
therefore some modification of this approach could be needed. Certain remedy will
be recommended in the sixth section.
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5. Stochastic generalizations

To obtain J(ϑ) ≈ 0 in the previous section is quite not realistic; this depends
not only on the quality, efficiency and robustness of the above presented purely
deterministic algorithm, but also on the stochastic character of data, influence of
disturbing physical processes and measurement imprecisions. However, sources of
such errors cannot be distinguished, which restrains the validity of identification
results; moreover, most technical standards on the laboratory testing require to sub-
mit some uncertainty analysis. Thus it could be useful to generalize all deterministic
formulations to stochastic ones, although a lot of difficulties, including that in the
mathematical verification (as the absence of simple imbedding and similar theorems
for proofs), must be expected.

In general, instead of the spaces of abstract functions of the type L2(I,S) with S
taken as V , L2(Ω), etc., we are able, following [35], to define the spaces L2(Θ, I,S)
where Θ refers to a space of elementary events, supplied with some σ-algebra and
some probability measure P . Our optimization functional then obtains a new pa-
rameter θ ∈ Θ, i. e.

J∗(γ) =
1

2

∫
Θ

∫
I

∫
Γc

w(x, θ)(u(x, t, θ)− uc(x, t, θ))2 ds(x) dt dP .

Various approaches to the mimimization of such (or similar) functional can be
then found in the literature, e. g. i) [22] applies the Karhunen - Loève spectral ex-
pansion, or, alternatively, the expansion based on the Hermitean polynomial chaos,
which leads to the stochastic finite element technique, ii) [34] prefers the Bayesian
approach, with Markov chains and Monte Carlo simulations, iii) a quite different
algorithm comes from the Sobol sensitivity analysis by [19], relying on Monte Carlo
simulations again. Nevertheless, the common drawbacks of such analysis, in addition
to the above mentioned difficulties in functional and numerical analysis, are numer-
ous artificial regularization tricks, as the Tikhonov regularization by [36], absence
of appropriate software tools oriented to engineering applications and exceedingly
time-consuming and expensive computations.

6. Nonlinear problems

Regardless of the formal similarity of mass and energy balance equaitions, as well
as of the linearized Fourier and Fick constitutive equations, typical material char-
acteristics for diffusion of liquid water, water vapour and various contaminants are
much more complicated than those from the heat transfer with dominated conduc-
tion, discussed in [31] – all results depend on material microstructure (not only on
such macroscopic characteristics as volume fraction of pores) significantly, diffusion
is typically not quite reversible, etc. Consequently the approach from the fourth sec-
tion do not lead to any credible results for engineering simulations. As a motivation
from an useful modification of such approach, we shall come from the experimental
tool sketched on Fig. 4.
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Let us start, following [25], p. 253, with some useful transforms and substitutions,
namely with the enthalpic and Kirchhoff transformations by [31] (for various right-
hand sides)

κ(u)u̇−∇ · (λ(u)∇u) = . . .

κ̂(u(r)) =

∫ r

0

κ(ρ) dρ , λ̂(u(r)) =

∫ r

0

λ(ρ) dρ , β(u) = λ̂(κ̂−1(u)) ,

consequently

U̇ −∆β(U) = . . .

for the (adroitly defined) enthalpy U = κ̂(u). For simplicity, in all remaining consid-
erations we shall take only κ(u) = 1, zero f and empty Γi.

For an effective computation, the natural requirements are: i) u ≈ u∗ on some
set Ω∗ ⊆ Ω with meas(Ω∗) > 0, with measured u∗-values, to avoid lack of data,
ii) introduction of

G(u) =
1

2
(u− u∗, w(u− u∗))

with some weight w ∈ L∞(Ω∗), zero-valued outside Ω∗ iii) local estimates of β(.)
or λ(.), coming from the direct formulation. For sufficiently smooth β(.) we are then
able to perform obvious conversions

∇β(u) = β′(u)∇(u) = λ(u)∇u ,

∆β(u) = ∇ · ∇β(u) = ∇ · (λ(u)∇u) = λ′(u)∇u · ∇u+ λ(u)∆u .

The weak formulation of a direct problem reads: for some fixed ϑ and u0 = 0
find u such that F (β, u, v) = 0 for any v, i. e.

(u̇, v) + (∇β(u),∇v) = 〈g, v〉 .

Its strong formulation comes from the obvious application of the Green - Ostrogradskǐı
theorem

(u̇−∆β(u), v) = 〈g −∇β(u) · ν, v〉 , (4)

or from its alternative form (with λ instead of β)

(u̇− λ′(u)∇u · ∇u− λ(u)∆u, v) = 〈g −∇β(u) · ν, v〉 . (5)

The analysis of solvability of (4) can be done by [25], p. 239. The analogous (not
quite general) analysis of (5) in [24] needs non-trivial regularity results from [13]
and auxiliary lemmas from [10]. The reverse application of the Green - Ostrogradskǐı
theorem gives here

(u̇, v)− (β(u),∆v) = 〈g, v〉 − 〈β(u),∇v · ν〉 .
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Most authors do not distinguish between u and u∗ at all, inserting u∗ (if avail-
able) instead of u into all calculations. To identify a function β(u), some decom-
position (finite-dimensional in practical calculations) is needed. The standard one
is β(u) = ciβi(u) where the sum over i ∈ {1, 2, . . .} (due to the Einstein sum-
mation rule) is considered for prescribed functions βi(u) and unknown real co-
efficients ci. However, [6], p. 62, develops another approximate method where
Mi = {(x, t) ∈ Ω × I : λi−1 ≤ λ(u(x, t)) ≤ λi}, λi(u) = (λi−1 + λi)/2 and
ci = meas(Mi), utilizing a priori given constants λ0, λ1, . . ., as a basis for the double
integration method by [9].

Some explicit formulae for the evaluation of λ(u) can be found in the litera-
ture, coming from the one-dimensional simplification on a half-line (for a theoreti-
cally infinite sample). The most celebrated result, based on the Boltzmann - Matano
transformation y = x/(2

√
t) (generating an ordinary differential problem in y), is

λ(u(x, t)) =
1

2tu′x(x, t)

∫ ∞
x

ξu′ξ(ξ, t) dξ ; (6)

for various modifications of this formula and for the historical remarks see [18]. As
shown in [32] (including an original software code in MATLAB), infinite integrals
in (6) can be removed for the prescribed boundary flux g (from direct measurements)
with the result

λ(u(x, t)) =
1

u′x(x, t)

(∫ x

0

u̇(ξ, t) dξ − g(t)

)
.

Another modification of (6)

λ(u(x, t)) = − 1

u′x(x, t)

∫ ∞
x

u̇(ξ, t) dξ

is presented as the third integration method in [28].
General estimates of β(.) or λ(.) from three-dimensional experimental data are

more delicate, utilizing some (numerically unpleasant) Dirac distributions δ(.) in
most cases. The second integration method by [28] comes from the equation of type

(u̇− λ′(u)∇u · ∇u− λ(u)∆u, v) = . . .

for v = δ(x− ξ)δ(t− ι), ξ ∈ Ω and ι ∈ I. Consequently

λ′(u)∇u · ∇u+ λ(u)∆u = u̇

remains on Ω×I; this can be solved (unlike a direct nonlinear problem) as one linear
ordinary differential equation. The first integration method by [28] considers

(u̇, v)− (β(u),∆v) = . . .

for v(x, t) = v∗(x, ξ)δ(t− ι); the integration then gives

β(u(x, t)) = − 1

4π

∫
Ω

u̇(ξ, t)

|x− ξ|
dξ
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locally. In the above announced double integration method it is sufficient to choose
v = δ(x− ξ)δ(t− ι) with ξ ∈ Ω and ι ∈ I in

(u̇−∇ · (λ(u)∇(u)), v) = . . . ;

however, Mi for i ∈ {1, 2, . . .} must be (approximately) detected from the analysis
of isohypersufaces u(x, t), consequently the integration over Ω × I is needed to de-
termine ci (which is extremely expensive for any two- ore more-dimensional case).
An alternative approach of [6], p. 67, then relies on some special genetic algorithms;
for still other alternative optimization approaches cf. [8].

Let us consider c = (c1, c2, . . .) (and later also c̃ = (c̃1, c̃2, . . .)). A direct, sen-
sitivity and adjoint problem can be now formulated similarly to the fourth section
here; we shall present the weak formulations only. For a direct problem this reads:
for some fixed c = (c1, c2, . . .) and for u0 = 0 find u such that F (c, u, v) = 0 for
any v, i. e.

(u̇, v) + (∇βi(u),∇v)ci = 〈g, v〉 .

For a sensitivity problem this reads: for some fixed c and c̃ and for u0 = 0 find ũ
such that DF (c, u, v, c̃, ũ, o) = 0 for any v, i. e.

( ˙̃u, v) + (∇βi(ũ),∇v)ci = (∇βi(u),∇v)c̃i .

For an adjoint problem this reads: for some fixed c and for uς = 0 find v such that
DF (c, u, v, o, ũ, o) = DG(u, ũ) for u from a direct problem and for any ũ, i. e.

−(ũ, v̇) + (∇βi(ũ),∇v)ci = (w(u− u∗), ũ) .

Combining ũ from a sensitivity and v from an adjoint problem, we receive

(∇βi(u),∇v)c̃i = (w(u− u∗), ũ) ;

J(c) = G(u) can be introduced.
The conjugate gradient algorithm, starting from certain initial estimate c0 of

c, works with iterations ck for k ∈ {1, 2, . . .}, gradients Gk = (uk(ck) − u∗)v
k and

differentials DJ∗(c
k, c̃k) = (c̃k,Gk), D2J∗(c

k, c̃k, c̃k) = (wũ(ck, c̃k), ũ(ck, c̃k)). This
leads to the algorithm

ck+1 = ck + akc̃k ,

c̃k = bkc̃k−1 − Gk , in particular c̃0 = 0 (b1 is not needed)

again; here

ak = −DJ∗(ck, c̃k)/D2J∗(c
k; c̃k; c̃k) , bk = (wGk,Gk)/(wGk−1,Gk−1),

with possible alternatives for the evaluation of bk again.
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7. Conclusion

The increase of requirements from engineering practice to reliable analysis of
inverse problems, namely on identification of material characteristics in thermody-
namical applications, discussed in this paper, due to advanced materials, structures
and technologies, seem to be faster than the progress in analysis of existence of their
(unique) solutions, of (global) convergence of sequences of approximate solutions in
finite-dimensional spaces, etc. Even the variety of (often ad hoc) computational al-
gorithms documents the absence of a general, inexpensive and robust one, working
for a large class of experimental settings. Clearly this is a strong motivation for
further research – maybe following the way predicted by [11]: i) overreaction to im-
mature technology (naive euphoria), ii) frustration (cynicism), iii) true user benefits
(realistic expectation), with certain asymptote of reality.
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Térmica 4 (2003), 55–64.

[2] Axelsson, O.: A generalized conjugate gradient least square method. Nu-
merische Mathematik 51 (1987), pp. 23–29.

[3] Barták, J., Herrmann, L., Lovicar, V., and Vejvoda, O.: Partial Differential
Equations of Evolution. Ellis Horwood, Chichester, 1991.
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[5] Bochev, P.B., and Gunzburger, M.D. Least-Squares Finite Element Methods.
Springer, New York, 2009.
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[10] Feireisl, E., Petzeltová, H., and Simondon, F.: Admissible solutions for a class of
nonlinear parabolic problems with non-negative data. Proceedings of the Royal
Society in Edinburgh, Section A – Mathematics, 131 (2001), 857–883.

[11] Fish, J.: Multiscale computations: boom or bust. IACM Expressions 22 (2008),
4–7.

[12] Franc̊u, J., and Svanstedt, N.: Some remarks on two-scale convergence and
periodic unfolding. Applications of Mathematics 57 (2012), 359–375.
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cional 6 (2005), 273–284.
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Abstract

Discontinuous Galerkin (DG) methods are starting to be a very popular solver for

stiff ODEs. To be able to prove some more subtle properties of DG methods it can be

shown that the DG method is equivalent to a specific collocation method which is in

turn equivalent to an even more specific implicit Runge–Kutta (RK) method. These

equivalences provide us with another interesting view on the DG method and enable

us to employ well known techniques developed already for any of these methods.

Our aim will be proving the superconvergence property of the DG method in Radau

quadrature nodes.

1. Introduction

The Discontinuous Galerkin (DG) method, either as space or time discretization,
starts to play an important role in problems, where robust and highly efficient solvers
are needed. Such a method enables a user to fully exploit adaptivity with higher
order approximation and still it remains very robust.

The DG time discretizations are usually analyzed by similar means as the finite
element method, see e.g. [9]. In such a way we obtain L∞ estimates of order s for
s−1 degree polynomial approximation. But numerical experiments often show better
behaviour of the discrete solution in the nodes of Radau quadrature and especially
in the endpoints of intervals. This phenomenon is usually called superconvergence.

Our aim will be showing some ideas how the possible analysis of superconver-
gence can be carried out in this case. In our approach we will focus on the Radau
quadrature variant, where the integrals from the classical DG discretization are re-
placed by (right) Radau quadrature of suitable order, i.e. the quadrature preserves
linear terms. As a first step we will show generally that this Radau quadrature
variant of the DG method is equivalent to the well known Radau IIA Runge–Kutta
(RK) method in Radau quadrature nodes. Then it is possible to use classical results
developed for implicit RK methods to achieve superconvergence error estimates. In
this part we will be mainly focused on stiff, linear problems.
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2. ODE and discretizations

Let us assume the following ODE

y′(t) = f(t, y(t)), ∀t ∈ (0, T ), (1)

y(0) = α.

Let us assume tm = mτ be an equidistant partition of (0, T ) with time step τ . We
introduce several one–step methods:

Runge–Kutta methods: Let ai,j, bi, ci, i, j = 1, . . . , s be suitable coefficients.
Then we call the sequence ym satisfying y0 = α

gmi = ym−1 + τ

s
∑

j=1

ai,jf(tm−1 + τcj , g
m
j ), ∀i = 1, . . . , s, (2)

ym = ym−1 + τ
s

∑

i=1

bif(tm−1 + τci, g
m
i )

the RK solution of (1) approximating values y(tm).
Collocation methods: Let ci, i = 1, . . . , s be suitable coefficients. Let y0 = α.

In every step we construct polynomial p of degree at most s such that

p(tm−1) = ym−1, (3)

p′(tm−1 + τci) = f(tm−1 + τci, p(tm−1 + τci)), ∀i = 1, . . . , s.

Then we put ym = p(tm). We call the resulting sequence the collocation solution
of (1) approximating values y(tm).

Discontinuous Galerkin method: Let us denote Im = (tm−1, tm). Let us
define the space

Sτ = {v ∈ L2(0, T ) : v|Im ∈ P s−1}, (4)

where P s−1 is a space of polynomials of degree s − 1. Since the functions from Sτ

are discontinuous in general in nodes of the partition, we denote the limit at nodes
vm± = v(tm±) and the jump {v}m = vm+ − vm− . We call u ∈ Sτ the DG solution of (1)
if u0

− = α and
∫

Im

u′(t)v(t)dt+ {u}m−1v
m−1
+ =

∫

Im

f(t, u(t))v(t)dt, ∀v ∈ Sτ , ∀m. (5)

For comparison with previous methods we focus mainly on endpoints of intervals:
um
− ≈ y(tm).
Radau discontinuous Galerkin method: Let r ∈ P s be the (right) Radau

polynomial, i.e. r(0) = 1, r(1) = 0, and for s ≥ 2 let r be orthogonal to the
polynomial space P s−2. We can define the (right) Radau quadrature by

∫ 1

0

F (t)dt ≈ Q[F (t)] =

s
∑

i=1

wiF (xi), (6)
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where xi are roots of r and wi are chosen in such a way that the resulting quadrature is
accurate for polynomials P 2s−2. Similarly we can define the Radau quadrature Qm[.]
and Radau polynomial rm on Im. We can define the Radau DG solution of (1) by
replacing integrals by Radau quadratures in (5)

Qm[u
′(t)v(t)] + {u}m−1v

m−1
+ = Qm[f(t, u(t))v(t)], ∀v ∈ Sτ , ∀m. (7)

3. The Radau discontinuous Galerkin method is a Runge–Kutta method

In fact we want to show this in two steps. First, when the coefficients ci of the
collocation method are chosen as Radau quadrature nodes, then there is the following
relation between the collocation polynomial p and Radau DG solution u

p(t) = u(t)− {u}m−1rm(t). (8)

From this it follows that p(tm−1 + τci) = u(tm−1 + τci), since rm(tm−1 + τci) = 0.
Since cs = 1 we gain the correspondence of the collocation solution and the Radau
DG solution at tm, i.e. y

m = p(tm) = um
− .

Lemma 1. Let p ∈ P s be the collocation polynomial on Im associated to the collo-

cation method with coefficients ci chosen as Radau quadrature nodes, u ∈ P s−1 be

the Radau DG solution on Im and rm ∈ P s be the (right) Radau polynomial on Im.
Then (8) holds.

The proof follows the ideas from [7], where a similar case (continuous Galerkin
and Gauss quadrature) is considered.

Proof. Let u ∈ P s−1 be the Radau DG solution on Im. We need to verify (3).

p(tm−1) = u|Im(tm−1)− {u}m−1rm(tm−1) = um−1
+ − (um−1

+ − um−1
− ) = um−1

− . (9)

We denote ℓm,i the Lagrange interpolation basis function

ℓm,i(t) =
∏

j 6=i

t− tm−1 − τcj
τ(ci − cj)

. (10)

We can use ℓm,i as test functions in (7) and we obtain

wiu
′(tm−1 + τci) + {u}m−1ℓm,i(tm−1) = wif(tm−1 + τci, u(tm−1 + τci)). (11)

Now it is sufficient to show that wir
′
m(tm−1 + τci) = −ℓm,i(tm−1). Since the product

ℓm,ir
′
m ∈ P 2s−2, Radau quadrature for such a term is exact and we obtain

wir
′

m(tm−1 + τci) = Qm[ℓm,i(t)r
′

m(t)] =

∫

Im

ℓm,i(t)r
′

m(t)dt (12)

= ℓm,i(tm)rm(tm)− ℓm,i(tm−1)rm(tm−1)−

∫

Im

ℓ′m,i(t)rm(t)dt = −ℓm,i(tm−1),

since rm(tm) = 0, rm(tm−1) = 1 and rm is orthogonal to P s−2 on Im.
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The second step is that every collocation method is equivalent to a suitable RK
method.

Lemma 2. Let the RK coefficients be chosen in the following way

ai,j =

∫ ci

0

ℓj(t)dt, ∀i, j = 1, . . . , s, (13)

bi =

∫ 1

0

ℓi(t)dt, ∀i = 1, . . . , s, (14)

where ℓi is the Lagrange interpolation basis function

ℓi(t) =
∏

j 6=i

t− cj
ci − cj

. (15)

Then the values gmi , i = 1, . . . , s and ym produced by such a RK method are equal to

the values p(tm−1+ τci), i = 1, . . . , s and ym produced by the collocation method with

the same coefficients ci.

Proof. The proof can be found in [4] or [10].

Now from Lemma 1 and Lemma 2 we can see that the values produced by the
Radau DG method in Radau quadrature nodes are equal to the values produced by
a suitable RK method. Such a RK method is the well known Radau IIA RK method.

4. Analysis of the Radau IIA Runge–Kutta method

Now, we shall turn our focus on numerical analysis of linear problems

y′(t) = By(t) + f(t), ∀t ∈ (0, T ). (16)

To do so, we shall focus on Dalquist’s equation y′(t) = λy(t) with the exact solution
y(tm) = eτλy(tm−1). For the purpose of analysis we assume Reλ ≤ 0, i.e. stable
behaviour of the solution. Rewriting (2) in a vector–matrix formulation we obtain

gm = ym−11+ τλAgm, (17)

ym = ym−1 + τλbT gm, (18)

where vector 1 = (1, . . . , 1)T , matrix A and vectors b and gm are formed by entries
ai,j, bi and gmi . Eliminating inner stages gmi we obtain ym = R(τλ)ym−1, where

R(z) = 1 + zbT (I − zA)−11 =
det(I − zA + zbT1)

det(I − zA)
. (19)

Following [6, Theorem 3.11] we can see that R(z) is in the case of Radau IIA RK
method the ”subdiagonal” (s− 1, s)–Padé approximation satisfying

exp(z)−R(z) = O(z2s). (20)
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Moreover, following results from [6, Chapter IV.4] we can conclude that R(z) is also
A–stable, i.e. |R(z)| ≤ 1 for any Rez ≤ 0. We define the local error

ρm = y(tm)− R(τλ)y(tm−1) = (exp(τλ)− R(τλ))y(tm−1). (21)

From (20) we can see that |ρm| ≤ Cτ 2s max |y(2s)|. Then the error analysis follows
easily from the stability of R(z)

|em| = |y(tm)− ym| = |ρm +R(τλ)em−1| ≤ . . . (22)

. . . ≤ |R(τλ)|m|e0|+
m
∑

i=1

|R(τλ)|m−i|ρi| ≤ |e0|+ T
1

τ
max

i
|ρi|.

Assuming e0 = 0 we gain global error estimate em = O(τ 2s−1).
This result can be extended to the multidimensional case y′(t) = By(t), where B

is a matrix (or operator on Banach spaces in general) satisfying Re 〈By, y〉 ≤ 0. The
extension remains almost the same as the scalar case with the only difficulty arising
from the question whether ‖R(τB)‖ ≤ 1. The answer to this question is positive.
The proof of the matrix case can be found in [6, Theorem 11.2]. The proof of the
general operator case can be found in [8].

Now, we shall come back to equation (16). Unfortunately, the extension of pre-
vious results is not straightforward. According to [1] it is necessary to assume an
additional assumption, otherwise the so-called order reduction phenomena occur.

Theorem 3. Let y be the exact solution of (16) with operator B satisfying

Re 〈Bv, v〉 ≤ 0. Let

y(k) ∈ Dom(B2s−k), ∀k = s+ 1, . . . , 2s. (23)

Then the Radau IIA RK solution ym converges with order 2s− 1,
i.e. ‖y(tm)− ym‖ = O(τ 2s−1).

Proof. The proof can be found in [1].

We should mention that in the previous case f = 0, the additional assump-
tion (23) was automatically satisfied for solutions with bounded derivatives, i.e. y(2s)

bounded. For ODEs coming from PDE discretizations in space assumption (23) can
be reformulated as some kind of regularity and compatibility conditions on data. In
usual context of weakly formulated PDEs these conditions are considered unnatural.
Assumption (23) is necessary to achieve order 2s, but it can be relaxed to obtain
reduced orders, still higher than s. For assumptions needed to obtain order s+1 see
e.g. [3].

Up to now we have analyzed the error in the nodes tm only. From [2] and [5]
follows the local error estimate for internal stages gmi of implicit RK methods. In
the case of Radau IIA RK method we obtain order s+1 there. Together with global
error estimates at tm at least of order s + 1 we get also global error estimates at
Radau quadrature nodes of order s+ 1.
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[4] Guillou, A. and Soulé, J. L.: La résolution numérique des problemes différentiels
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Abstract

A modification of the limited-memory variable metric BNS method for large scale

unconstrained optimization of the differentiable function f : RN → R is considered,

which consists in corrections (based on the idea of conjugate directions) of difference

vectors for better satisfaction of the previous quasi-Newton conditions. In comparison

with [11], more previous iterations can be utilized here. For quadratic objective

functions, the improvement of convergence is the best one in some sense, all stored

corrected difference vectors are conjugate and the quasi-Newton conditions with these

vectors are satisfied. The algorithm is globally convergent for convex sufficiently

smooth functions and our numerical experiments indicate its efficiency.

1. Introduction

The BNS method (see [3]) belongs to the variable metric (VM) or quasi-Newton
(QN) line search iterative methods, see [9], [10]. They start with an initial point
x0 ∈ RN and generate iterations xk+1 ∈ RN by the process xk+1 = xk+sk, sk = tkdk,
k ≥ 0, where usually the direction vector dk ∈ RN is dk = −Hkgk, matrix Hk is
symmetric positive definite and a stepsize tk > 0 is chosen in such a way that

fk+1 − fk ≤ ε1tkg
T
k dk, gTk+1dk ≥ ε2g

T
k dk, k ≥ 0 (1)

(the Wolfe line search conditions, see [10]), where 0<ε1<1/2, ε1<ε2 < 1, fk=f(xk),
gk=∇f(xk); typically H0 is a multiple of I and Hk+1 is obtained from Hk by a VM
update to satisfy the QN condition (see [9]) Hk+1yk=sk, yk= gk+1− gk, k≥0.

Among VM methods, the BFGS method, see [9], [10], belongs to the most ef-
ficient; it preserves positive definite VM matrices and can be easily modified for
large-scale optimization; the BNS and L-BFGS (see [5], [6] - subroutine PLIS) meth-
ods represent its well-known limited-memory adaptations. In every iteration, we
repeatedly update an initial approximation of the inverse Hessian matrix ζkI, ζk > 0,
by the BFGS method, using m̃+ 1 couples of vectors (sk−m̃, yk−m̃), . . . , (sk, yk) suc-
cessively (without forming approximations of the inverse Hessian matrix explicitly),
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where m̃=min(k,m−1) andm>1 is a given parameter. In the case of the BNS method,
the direction vector can be calculated without computing matrix H+, see [3], by

−H+g+ = −ζg+ − S
[

U−T
(

(D + ζY TY )U−1STg+ − ζY Tg+

)]

+ Y
[

ζU−1STg+

]

, (2)

(we often omit index k and replace indices k+1, k−1 by the symbols +, − for
simplification), where for k ≥ 0 we denote bk = sTk yk and Sk = [sk−m̃, . . . , sk], Yk =
[yk−m̃, . . . , yk], Dk =diag[bk−m̃, . . . , bk], (Uk)i,j =(ST

k Yk)i,j for i≤ j, (Uk)i,j =0 other-
wise (an upper triangular matrix).

The concept of conjugacy plays an important role in optimization methods based
on quadratic models, see e.g. [10]. We generalize the approach presented in [11],
using vectors from more previous iterations to correct vectors s, y. Unlike [11], we
use the BNS concept to calculate the direction vector, since then the increase in the
number of required arithmetic operations can be relatively small. We use corrected
quantities s̃k, ỹk, b̃k, H̃k, k≥0, defined by s̃0=s0, ỹ0=y0, b̃0=b0, H̃0=I and

s̃k = sk + Ŝ kσk, ỹk = yk + Ŷ kηk, b̃k = s̃Tk ỹk, k > 0, (3)

where matrices Ŝk, Ŷk contain some columns of S̃k=[s̃k−m̃, ... ,s̃k−1], Ỹ k=[ỹk−m̃, ... ,ỹk−1]
(we denote a set of indices i of these selected vectors s̃i, ỹi by Ik and Ik = Ik ∪ {k};
it can be Ik = ∅, in which case we set s̃k = sk, ỹk = yk, b̃k = bk) and σk, ηk are
chosen in such a way that b̃k > 0. Positive definite matrix H̃+ is obtained by analogy
to H+, using corrected difference vectors. Note that matrix H̃+ satisfies the QN
condition H̃+ỹ = s̃ and that the direction vector d̃+= −H̃+g+ (and consequently,
also an auxiliary vector Ỹ TH̃+g+) can be calculated by analogy to (2).

In Section 2 we investigate the BFGS update with corrected difference vectors

Ḧ+ = (1/b̃)s̃s̃T + Ṽ ḦṼ T , Ṽ = I − (1/b̃)s̃ỹT , (4)

where Ḧ is any symmetric positive definite matrix, and discuss the choice of pa-
rameters σ, η. In Section 3 we show properties of Ḧ+ and a role of unit stepsizes
for quadratic functions. Application to the corrected BNS method and the corre-
sponding algorithm are described in Section 4. Global convergence of the algorithm
is established in Section 5 and numerical results are reported in Section 6. We will
denote the Frobenius matrix norm by‖ · ‖F , the spectral matrix norm by‖ · ‖ and the
Euclidean vector norm by | · |. Details and proofs of assertions can be found in [13].

2. Derivation of the method

Assuming that set I is non-empty, we will investigate the influence of the correc-
tion parameters σ, η on properties of matrix Ḧ+, given by (4). For our purpose, the
satisfaction of the QN conditions Ḧ+Ŷ= Ŝ, Ŝ=[Ŝ, s̃], Ŷ=[Ŷ , ỹ], plays a crucial role.
We will suppose that the auxiliary QN conditions ḦŶ = Ŝ are satisfied (thus matrix

Ŝ
T
Ŷ = Ŷ

T
ḦŶ is symmetric) and give a technique which guarantees the satisfaction of

these conditions for a suitable matrix Ḧ . We denote B̈=Ḧ−1, B̈+=Ḧ−1
+ , ä= ỹTḦỹ.
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The following lemma shows that, under some assumptions, conditions Ḧ+ỹi= s̃i
are equivalent to the conjugacy of vector s̃ with vectors s̃i with respect to B̈, B̈+, i.e.

s̃TB̈s̃i = s̃TB̈+s̃i = 0, i ∈ I, or Ŝ
T
ỹ = Ŷ

T
s̃ = 0; these equations can be easily solved.

Lemma 1. Let Ḧ be any symmetric positive definite matrix satisfying ḦŶ = Ŝ,
matrix Ḧ+ be given by (4) and let b̃ >0. Then Ḧ+ is symmetric positive definite. If

vectors s̃, Ḧỹ are linearly independent then Ḧ+Ŷ= Ŝ if and only if Ŝ
T
ỹ= Ŷ

T
s̃=0.

Lemma 2. Let matrix Ŝ
T
Ŷ be nonsingular. Then the unique solution (σ, η) to

Ŝ
T
ỹ= Ŷ

T
s̃=0 is (σ∗, η∗), where σ∗ = −

(

Ŷ
T
Ŝ
)−1

Ŷ
T
s, η∗ = −

(

Ŝ
T
Ŷ
)−1

Ŝ
T
y.

Theorem 1 shows the variational characterizations of the choice σ= σ∗, η = η∗

also for non-quadratic functions, see also Theorem 3. Assumptions of Theorem 2 give
our simple strategy for choosing matrices Ŝ, Ŷ , which guarantees the satisfaction of
the QN conditions H̃k+1Ŷk = Ŝk and the corresponding auxiliary QN conditions.

Theorem 1. Let b̃ > 0 for (σ, η) = (σ∗, η∗), matrix Ŝ
T
Ŷ be nonsingular, matri-

ces Ḧ, Ḧ+ satisfy the same assumptions as in Lemma 1 and define S(Ŝ, Ŷ )={(σ, η) :

Ŝ
T
ỹ= Ŷ

T
s̃ }. If we have any symmetric positive definite matrix G̈ such that G̈Ŝ= Ŷ

and G̈(s + Ŝσ̈) = y + Ŷ η̈ for some (σ̈, η̈) ∈ S(Ŝ, Ŷ ), then within (σ, η) ∈ S(Ŝ, Ŷ ),
values ‖G̈1/2Ḧ+G̈

1/2−I‖2F and b̃ are minimized by the choice σ= σ∗, η = η∗.

Theorem 2. Suppose that each set Ik, k > 0, is chosen in such a way that Ik ⊂ Ik−1,

b̃k > 0 and Ŝ
T

kỹk = Ŷ
T

ks̃k = 0 in case that Ik 6= ∅. Then for k > 0: s̃Ti ỹj = ỹTi s̃j = 0,

i ∈ Ik, i < j ≤ k, the QN conditions H̃k+1Ŷk = Ŝk are satisfied and the auxiliary
QN conditions ḦkŶ k = Ŝk are satisfied for Ik 6= ∅ with those matrices Ḧk by the
BFGS updating (4) of which we get matrices H̃k+1 = Ḧk+1.

The first assertion of the theorem implies that all matrices ŜT Ŷ are diagonal
and thus many results can be simplified. E.g. vectors σ∗, η∗ have components
−sTỹi/b̃i,−s̃Tiy/b̃i, i ∈ I, and a damage of the QN condition with non-corrected
vectors caused by our corrections and value b̃ for (σ, η) = (σ∗, η∗) can be written:

(Ḧ+y−s)TB̈+(Ḧ+y−s) = b
∑

i∈I
(s̃Tiy − sTỹi)

2/(bb̃i), b̃ = b−
∑

i∈I
sTỹi s̃

T
iy/b̃i. (5)

3. Results for quadratic functions

Here we suppose that f is a quadratic function with a symmetric positive definite
Hessian G and ηk = σk, k > 0, which yields ỹk =Gs̃k, as for non-corrected vectors.
The following lemma and theorem show that for the choice σ= σ∗, the improvement
of convergence is the best in some sense for linearly independent direction vectors.

Lemma 3. Let f be a quadratic function f(x) = 1
2
(x − x̄)TG(x − x̄), x̄ ∈ RN ,

with a symmetric positive definite matrix G and all columns of [S̃ , s] be linearly

independent. Then for any selection of Ŝ, Ŷ from S̃, Ỹ , matrix Ŝ
T
Ŷ is symmetric

positive definite, value σ∗ is well defined by Lemma 2 and b̃>0 for any σ = η.
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Theorem 3. Let Ḧ be any symmetric positive definite matrix satisfying ḦŶ = Ŝ and
suppose that σ= η and that the assumptions of Lemma 3 are satisfied. Then b̃ > 0
and the choice σ=σ∗ implies Ḧ+y=s and minimizes values b̃ and ‖G1/2Ḧ+G

1/2−I‖F
as a function of σ, where matrix Ḧ+ is defined by update (4) of Ḧ.

Theorem 4 describes a situation when the case σ = σ∗ occurs in all iterations.
Comparing these results with those given in [11] (Theorem 3.2) for the unit stepsizes,
we see that they are similar. Theorem 5 gives an interesting explanation.

Theorem 4. Let the assumptions of Lemma 3 be satisfied with the columns of every
matrix [S̃k, sk] linearly independent and let always Ŝk= S̃k, Ŷ k= Ỹ k, σk=σ∗

k, k > 0.
Then all columns of S̃k are G - conjugate, i.e. matrices S̃T

k Ỹk are diagonal and all
QN conditions H̃k+1Ỹk= S̃k, ḦkỸ k= S̃k, are satisfied, with those matrices Ḧk by the
BFGS updating (4) of which we get matrices H̃k+1 = Ḧk+1, k>0.

Theorem 5. Let H̃, H̃+ be symmetric positive definite matrices satisfying H̃Ŷ = Ŝ,
H̃+Ŷ = Ŝ, d=−H̃g, d+=−H̃+g+, σ=η, t=1 and the assumptions of Lemma 3 be

satisfied. Then Ŝ
T
y+= Ŷ

T
s+=0, i.e. all columns of Ŝ are G - conjugate with s+.

4. Implementation

It is important to say that not all vectors s̃i, ỹi, i∈I, are suitable as correction
vectors. Principally, we do not use vectors s̃i, ỹi, k−m̃≤ i<k, k > 0, for the correction
process (i.e. we decide that i 6∈Ik) if b̃k≤0, if resultant values bk/b̃k, bk/äk, bk/s̃

T
kB̈ks̃k

or (s̃Ti yk − sTk ỹi)
2/(bk b̃i) (see (5)) are too great or if i 6∈Ik−1, see Theorem 2.

In order to prove global convergence, we also exclude index i from I if values
|s̃i|/|si|, |ỹi|/|yi| are too great. Note that these values were rarely greater than 50
in our numerical experiments with N =5000. Further, Theorem 5 indicates that an
influence of the second and further correction vectors can be small. Thus for i<k−1,
k>0, we should not correct if a benefit of corrections is negligible, see [13] for details.

Algorithm 1 (without indices elimination details and stopping criteria)

Data: A number m > 1 of VM updates per iteration, line search and correction
parameters and a maximum number of correction vectors n∈ [0, m−1].

Step 0: Initiation. Choose starting point x0 ∈ RN , define starting matrix H̃0 = I
and direction vector d0 = −g0 and initiate iteration counter k to zero.

Step 1: Line search. Set m̃=min(k,m−1). Compute xk+1=xk+tkdk, where tk satisfies
(1), gk+1=∇f(xk+1), sk= tkdk, yk=gk+1−gk, bk=sTk yk, ζk= bk/y

T
k yk. If k=0

set s̃k = sk, ỹk = yk, b̃k = s̃Tk ỹk, Ik = {0}, S̃k = [s̃k], Ỹk = [ỹk], S̃
T
k Ỹk = [s̃Tk ỹk],

Ỹ T
k Ỹk = [ỹTk ỹk], compute S̃T

k gk+1, Ỹ
T
k gk+1 and go to Step 5. Compute S̃

T

kgk+1,

Ỹ
T

kgk+1, Ỹ
T

ksk= −tkỸ
T

kH̃kgk, S̃
T

kyk= S̃
T

kgk+1−S̃
T

kgk and Ỹ
T

kyk= Ỹ
T

kgk+1−Ỹ
T

k gk.

Step 2: Elimination of indices. Set Ik={i∈Ik−1 : i≥k−n}. Eliminate non-suitable
indices from Ik. If Ik=∅ go to Step 4, otherwise form matrices Ŝk, Ŷ k.

Step 3: Correction. Compute (σk)i = −sTk ỹi/b̃i, (ηk)i=−s̃Ti yk/b̃i for i∈Ik and s̃k, ỹk, b̃k
by (3). Set Ik = Ik ∪ {k}.
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Step 4: Matrix updating. Similarly as in [3] form matrices S̃k, Ỹk, S̃
T
k Ỹk, Ỹ

T
k Ỹk.

Step 5: Direction vector. Compute dk+1 = −H̃k+1gk+1 by the BNS method with
vectors (s̃k−m̃, ỹk−m̃), . . . , (s̃k, ỹk) and an auxiliary vector ỸkH̃k+1gk+1, see Sec-
tion 1. Set k :=k+1. If k≥m delete the first column of S̃k−1, Ỹk−1 and the first

row and column of S̃T
k−1Ỹk−1, Ỹ

T
k−1Ỹk−1 to form matrices S̃k, Ỹ k, S̃

T

k Ỹ k, Ỹ
T

k Ỹ k.
Go to Step 1.

5. Global convergence

Assumption 1. The objective function f : RN → R is bounded from below and
uniformly convex with bounded second-order derivatives (i.e. 0 < G ≤ λ(G(x)) ≤
λ(G(x)) ≤ G < ∞, x ∈ RN , where λ(G(x)) and λ(G(x)) are the lowest and the
greatest eigenvalues of the Hessian matrix G(x)).

Theorem 6. If the objective function f satisfies Assumption 1, Algorithm4.1 gen-
erates a sequence {gk} that satisfies lim

k→∞
|gk|=0 or terminates with gk=0 for some k.

6. Numerical experiments

We demonstrate the influence of vector corrections on the number of evaluations
and computational time, using the following collections of test problems: Test 11 [8]
(55 modified problems from CUTE collection [2] with N = 1000 − 5000, computed
repeatedly ten times), test from [1], termed Test 12 here, 73 problems, N = 10000,
Test 25 [7] (68 problems), N = 10000. The source texts and the corresponding
reports can be downloaded from camo.ici.ro/neculai/ansoft.htm (Test 12) and
www.cs.cas.cz/luksan/test.html (Tests 11 and 25).

Table 1 contains the total number of function evaluations (NFV) and the total
computational time in seconds (Time) for the following limited-memory methods:
L-BFGS [5], method from [11] and new Algorithm1 for n=2, 4, all implemented in
the system UFO [12]. We have used m=5 and the final precision ‖g(x⋆)‖∞ ≤ 10−6.

Test 11 Test 12 Test 25
Method NFV Time NFV Time NFV Time
L-BFGS 80539 10.361 119338 50.88 502966 429.01

Alg. 4.1 in [11] 64395 9.614 67619 32.61 325441 318.71
Alg. 1, n=2 62770 8.795 67372 31.06 302908 302.62
Alg. 1, n=4 64127 8.977 66403 30.77 308847 298.05

Table 1: Comparison of the selected methods

For Test 25, we also compare these methods by using performance profiles [4].
Value ρM(0) is the percentage of the test problems for which method M is the
best and value ρM (τ) for τ large enough is the percentage of the problems that
method M can solve. Performance profiles show the relative efficiency and reliability
of the methods: the higher is the particular curve, the better is the corresponding
method.
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Figure 1: Comparison of ρM (τ) for Test 25 (68 problems) and various methods.
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Petra Jarošová, jarosova.p@fce.vutbr.cz
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v Českých Budějovićıch
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Jan Pech, jpech@it.cas.cz
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Michal Petř́ık, pe3k.michal@gmail.com
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v Brně
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